Human papillomavirus infection and p16 expression in the immunocompetent patients with extragenital/extraungual Bowen's disease
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
27342647
PubMed Central
PMC4919835
DOI
10.1186/s13000-016-0505-3
PII: 10.1186/s13000-016-0505-3
Knihovny.cz E-zdroje
- Klíčová slova
- Bowen’s disease, Human papillomavirus, Skin cancer, p16,
- MeSH
- Alphapapillomavirus genetika izolace a purifikace MeSH
- Betapapillomavirus genetika izolace a purifikace MeSH
- Bowenova nemoc komplikace metabolismus MeSH
- dospělí MeSH
- genotyp MeSH
- imunokompetence MeSH
- infekce papilomavirem komplikace metabolismus MeSH
- inhibitor p16 cyklin-dependentní kinasy metabolismus MeSH
- koinfekce MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádory kůže komplikace metabolismus MeSH
- papilom komplikace metabolismus MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- CDKN2A protein, human MeSH Prohlížeč
- inhibitor p16 cyklin-dependentní kinasy MeSH
BACKGROUND: The role of human papillomaviruses (HPV) in the development of squamous cell carcinoma (SCC) has been established for anogenital lesions but still remains controversial for carcinomas in other sites. The aim of this study was to determine the α-HPV and β-HPV prevalence and their association with p16 expression, sun exposure, and clinicopathological findings in patients with Bowen's disease (BD). METHODS: One hundred sixty nine skin biopsy specimens from 157 immunocompetent patients with extragenital/extraungual BD were examined for HPV status and p16 expression. The presence of koilocyte-like changes, solar elastosis and papillomatosis was recorded for each specimen. RESULTS: BD was diagnosed more often in potentially sun-exposed sites with prevalence 73.6 % and a remarkable predilection for the head and neck region. High risk α-HPV or β-HPV were detected in 34.7 % of lesions and β-HPV infections dominated over α-HPV. Higher prevalence of koilocyte-like changes and papillomatosis was found in HPV-positive specimens but it was not statistically significant. The expression of p16 was detected in 79.8 % of lesions and displayed no correlation with the HPV status. HPV-positivity tended to be detected more often in sun-protected sites. Dual infections by α-HPV/β-HPV genera and mixed α-HPV infections were not detected, while 37.5 % of β-HPV positive specimens were infected by two or more β-HPV genotypes. HPV 9 was significantly associated with mixed β-HPV infections. CONCLUSIONS: HPV may play an etiological role at least in some SCC in situ arising in extragenital sites. Sunprotected sites may be more dependent on HPV-mediated co-carcinogenesis than sun exposed areas. The presence of the p16-expression, papillomatosis or koilocyte-like change is not a reliable marker of HPV infection in SCC in situ.
Zobrazit více v PubMed
Wang J, Aldabagh B, Yu J, Arron ST. Role of human papillomavirus in cutaneous squamous cell carcinoma: a meta-analysis. J Am Acad Dermatol. 2014;70:621–9. doi: 10.1016/j.jaad.2014.01.857. PubMed DOI PMC
Quint KD, Genders RE, de Koning MN, Borgogna C, Gariglio M, Bouwes Bavinck JN, et al. Human Beta-papillomavirus infection and keratinocyte carcinomas. J Pathol. 2015;235:342–54. doi: 10.1002/path.4425. PubMed DOI
Stark LA, Arends MJ, McLaren KM, Benton EC, Shahidullah H, Hunter JA, et al. Prevalence of human papillomavirus DNA in cutaneous neoplasms from renal allograft recipients supports a possible viral role in tumour promotion. Br J Cancer. 1994;69:222–9. doi: 10.1038/bjc.1994.43. PubMed DOI PMC
Shamanin V, zur Hausen H, Lavergne D, Proby CM, Leigh IM, Neumann C, et al. Human papillomavirus infections in nonmelanoma skin cancers from renal transplant recipients and nonimmunosuppressed patients. J Natl Cancer Inst. 1996;88:802–11. doi: 10.1093/jnci/88.12.802. PubMed DOI
de Villiers EM, Lavergne D, McLaren K, Benton EC. Prevailing papillomavirus types in non-melanoma carcinomas of the skin in renal allograft recipients. Int J Cancer. 1997;73:356–61. doi: 10.1002/(SICI)1097-0215(19971104)73:3<356::AID-IJC9>3.0.CO;2-Z. PubMed DOI
Harwood CA, Surentheran T, McGregor JM, Spink PJ, Leigh IM, Breuer J, et al. Human papillomavirus infection and non-melanoma skin cancer in immunosuppressed and immunocompetent individuals. J Med Virol. 2000;61:289–97. doi: 10.1002/1096-9071(200007)61:3<289::AID-JMV2>3.0.CO;2-Z. PubMed DOI
Berkhout RJ, Bouwes Bavinck JN, ter Schegget J. Persistence of human papillomavirus DNA in benign and (pre)malignant skin lesions from renal transplant recipients. J Clin Microbiol. 2000;38:2087–96. PubMed PMC
Iftner A, Klug SJ, Garbe C, Blum A, Stancu A, Wilczynski SP, et al. The prevalence of human papillomavirus genotypes in nonmelanoma skin cancers of nonimmunosuppressed individuals identifies high-risk genital types as possible risk factors. Cancer Res. 2003;63:7515–9. PubMed
Forslund O, Iftner T, Andersson K, Lindelof B, Hradil E, Nordin P, et al. Cutaneous human papillomaviruses found in sun-exposed skin: Beta-papillomavirus species 2 predominates in squamous cell carcinoma. J Infect Dis. 2007;196:876–83. doi: 10.1086/521031. PubMed DOI PMC
Asgari MM, Kiviat NB, Critchlow CW, Stern JE, Argenyi ZB, Raugi GJ, et al. Detection of human papillomavirus DNA in cutaneous squamous cell carcinoma among immunocompetent individuals. J Invest Dermatol. 2008;128:1409–17. doi: 10.1038/sj.jid.5701227. PubMed DOI PMC
Patel AS, Karagas MR, Perry AE, Nelson HH. Exposure profiles and human papillomavirus infection in skin cancer: an analysis of 25 genus beta-types in a population-based study. J Invest Dermatol. 2008;128:2888–93. doi: 10.1038/jid.2008.162. PubMed DOI PMC
Meyer T, Arndt R, Nindl I, Ulrich C, Christophers E, Stockfleth E. Association of human papillomavirus infections with cutaneous tumors in immunosuppressed patients. Transpl Int. 2003;16:146–53. doi: 10.1111/j.1432-2277.2003.tb00278.x. PubMed DOI
Reuschenbach M, Tran T, Faulstich F, Hartschuh W, Vinokurova S, Kloor M, et al. High-risk human papillomavirus in non-melanoma skin lesions from renal allograft recipients and immunocompetent patients. Br J Cancer. 2011;104:1334–41. doi: 10.1038/bjc.2011.95. PubMed DOI PMC
Proby CM, Harwood CA, Neale RE, Green AC, Euvrard S, Naldi L, et al. A case-control study of betapapillomavirus infection and cutaneous squamous cell carcinoma in organ transplant recipients. Am J Transplant. 2011;11:1498–508. doi: 10.1111/j.1600-6143.2011.03589.x. PubMed DOI
Park HR, Kim KH, Min SK, Seo J, Kim DH, Kwon MJ. Low rate of detection of mucosal high-risk-type human papillomavirus in Korean patients with extragenital Bowen’s disease and squamous cell carcinoma, especially in digital cases. Biomed Res Int. 2013;2013:421205. PubMed PMC
Bernat-García J, Morales Suárez-Varela M, Vilata-Corell JJ, Marquina-Vila A. Detection of human papillomavirus in nonmelanoma skin cancer lesions and healthy perilesional skin in kidney transplant recipients and immunocompetent patients. Actas Dermosifiliogr. 2014;105:286–94. doi: 10.1016/j.ad.2013.10.011. PubMed DOI
Shimizu A, Kato M, Takeuchi Y, Sano T, Kaira K, Uezato H, et al. Detection of human papillomavirus (HPV) in patients with squamous cell carcinoma and the clinical characteristics of HPV-positive cases. Br J Dermatol. 2014;171:779–85. doi: 10.1111/bjd.13234. PubMed DOI
Accardi R, Gheit T. Cutaneous HPV and skin cancer. Presse Med. 2014;43:e435–43. doi: 10.1016/j.lpm.2014.08.008. PubMed DOI
Weyers W. The centennial of Bowen’s disease-a critical review on the occasion of the 100th anniversary of its original description. Dermatol Pract Concept. 2012;2:204a02. PubMed PMC
Weedon D. Bowen’s disease. 3. London: Churchill Livingstone; 2010. pp. 679–82.
Bergeron C, Ronco G, Reuschenbach M, Wentzensen N, Arbyn M, Stoler M, et al. The clinical impact of using p16(INK4a) immunochemistry in cervical histopathology and cytology: an update of recent developments. Int J Cancer. 2015;136:2741–51. doi: 10.1002/ijc.28900. PubMed DOI
Venuti A, Paolini F. HPV detection methods in head and neck cancer. Head Neck Pathol. 2012;6(Suppl 1):S63–74. doi: 10.1007/s12105-012-0372-5. PubMed DOI PMC
Willman JH, Heinz D, Golitz LE, Shroyer KR. Correlation of p16 and pRb expression with HPV detection in Bowen’s disease. J Cutan Pathol. 2006;33:629–33. doi: 10.1111/j.1600-0560.2006.00499.x. PubMed DOI
Murao K, Yoshioka R, Kubo Y. Human papillomavirus infection in Bowen disease: negative p53 expression, not p16(INK4a) overexpression, is correlated with human papillomavirus-associated Bowen disease. J Dermatol. 2014;41:878–84. doi: 10.1111/1346-8138.12613. PubMed DOI
Hodges A, Smoller BR. Immunohistochemical comparison of p16 expression in actinic keratoses and squamous cell carcinomas of the skin. Mod Pathol. 2002;15:1121–5. doi: 10.1097/01.MP.0000032536.48264.D1. PubMed DOI
Salama ME, Mahmood MN, Qureshi HS, Ma C, Zarbo RJ, Ormsby AH. p16INK4a expression in actinic keratosis and Bowen’s disease. Br J Dermatol. 2003;149:1006–12. doi: 10.1111/j.1365-2133.2003.05654.x. PubMed DOI
Conscience I, Jovenin N, Coissard C, Lorenzato M, Durlach A, Grange F, et al. P16 is overexpressed in cutaneous carcinomas located on sun-exposed areas. Eur J Dermatol. 2006;16:518–22. PubMed
Auepemkiate S, Thongsuksai P, Boonyaphiphat P. P16(INK4A) expression in Bowen’s disease and Bowenoid papulosis. J Med Assoc Thai. 2006;89:1460–5. PubMed
Bagazgoitia L, Cuevas J, Juarranz A. Expression of p53 and p16 in actinic keratosis, bowenoid actinic keratosis and Bowen’s disease. J Eur Acad Dermatol Venereol. 2010;24:228–30. doi: 10.1111/j.1468-3083.2009.03337.x. PubMed DOI
Harvey NT, Leecy T, Wood BA. Immunohistochemical staining for p16 is a useful adjunctive test in the diagnosis of Bowen’s disease. Pathology. 2013;45:402–7. doi: 10.1097/PAT.0b013e328360c064. PubMed DOI
van Dongen JJ, Langerak AW, Brüggemann M, Evans PA, Hummel M, Lavender FL, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 2003;17:2257–317. doi: 10.1038/sj.leu.2403202. PubMed DOI
Skálová A, Kašpírková J, Andrle P, Hostička L, Vaneček T. Human papillomaviruses are not involved in the etiopathogenesis of salivary gland tumors. Cesk Patol. 2013;49:72–5. PubMed
Tieben LM, ter Schegget J, Minnaar RP, Bouwes Bavinck JN, Berkhout RJ, Vermeer BJ, et al. Detection of cutaneous and genital HPV types in clinical samples by PCR using consensus primers. J Virol Methods. 1993;42:265–79. doi: 10.1016/0166-0934(93)90038-S. PubMed DOI
Clayton MC, Solem MD. No ice, no butter. Advice on management of burns for primary care physicians. Postgrad Med. 1995;97:151–65. PubMed
Julious SA. Two-sided confidence intervals for the single proportion: comparison of seven methods by Robert G. Newcombe, Statistics in Medicine 1998;17:857-872. Stat Med. 2005;24(21):3383–4. doi: 10.1002/sim.2164. PubMed DOI
Revelle W. Procedures for Personality and Psychological Research, Northwestern University, Evanston, Illinois, USA. 2015. http://CRAN.R-project.org/package=psych Version = 1.5.8. Accessed 20 Nov 2015.
R Core Team. R. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2015. https://www.R-project.org. Accessed 20 Nov 2015.
Akgül B, Lemme W, García-Escudero R, Storey A, Pfister HJ. UV-B irradiation stimulates the promoter activity of the high-risk, cutaneous human papillomavirus 5 and 8 in primary keratinocytes. Arch Virol. 2005;150:145–51. doi: 10.1007/s00705-004-0398-4. PubMed DOI PMC
Jablonska S, Dabrowski J, Jakubowicz K. Epidermodysplasia verruciformis as a model in studies on the role of papovaviruses in oncogenesis. Cancer Res. 1972;32:583–9. PubMed
Bouwes Bavinck JN, Plasmeijer EI, Feltkamp MC. Beta-papillomavirus infection and skin cancer. J Invest Dermatol. 2008;128:1355–8. doi: 10.1038/jid.2008.123. PubMed DOI
IARC . Human Papillomaviruses. Lyon, France: IARC; 2012. pp. 255–313.
Pfister H, Fuchs PG, Majewski S, Jablonska S, Pniewska I, Malejczyk M. High prevalence of epidermodysplasia verruciformis-associated human papillomavirus DNA in actinic keratoses of the immunocompetent population. Arch Dermatol Res. 2003;295:273–9. doi: 10.1007/s00403-003-0435-2. PubMed DOI
Mitsuishi T, Kawana S, Kato T, Kawashima M. Human papillomavirus infection in actinic keratosis and bowen’s disease: comparative study with expression of cell-cycle regulatory proteins p21(Waf1/Cip1), p53, PCNA, Ki-67, and Bcl-2 in positive and negative lesions. Hum Pathol. 2003;34:886–92. doi: 10.1016/S0046-8177(03)00352-6. PubMed DOI
Jaeger AB, Gramkow A, Hjalgrim H, Melbye M, Frisch M. Bowen disease and risk of subsequent malignant neoplasms: a population-based cohort study of 1147 patients. Arch Dermatol. 1999;135:790–3. PubMed
Collina G, Rossi E, Bettelli S, Cook MG, Cesinaro AM, Trentini GP. Detection of human papillomavirus in extragenital Bowen’s disease using in situ hybridization and polymerase chain reaction. Am J Dermatopathol. 1995;17:236–41. doi: 10.1097/00000372-199506000-00004. PubMed DOI
Zheng S, Adachi A, Shimizu M, Shibata SI, Yasue S, Sakakibara A, et al. Human papillomaviruses of the mucosal type are present in some cases of extragenital Bowen’s disease. Br J Dermatol. 2005;152:1243–7. doi: 10.1111/j.1365-2133.2005.06643.x. PubMed DOI
Hama N, Ohtsuka T, Yamazaki S. Detection of mucosal human papilloma virus DNA in bowenoid papulosis, Bowen’s disease and squamous cell carcinoma of the skin. J Dermatol. 2006;33:331–7. doi: 10.1111/j.1346-8138.2006.00078.x. PubMed DOI
Blackard JT, Sherman KE. Hepatitis C virus coinfection and superinfection. J Infect Dis. 2007;195:519–24. doi: 10.1086/510858. PubMed DOI
Spinillo A, Dal Bello B, Alberizzi P, Cesari S, Gardella B, Roccio M, et al. Clustering patterns of human papillomavirus genotypes in multiple infections. Virus Res. 2009;142:154–9. doi: 10.1016/j.virusres.2009.02.004. PubMed DOI
Chaturvedi AK, Dumestre J, Gaffga AM, Mire KM, Clark RA, Braly PS, et al. Prevalence of human papillomavirus genotypes in women from three clinical settings. J Med Virol. 2005;75:105–13. doi: 10.1002/jmv.20244. PubMed DOI
Ho GY, Bierman R, Beardsley L, Chang CJ, Burk RD. Natural history of cervicovaginal papillomavirus infection in young women. N Engl J Med. 1998;338:423–8. doi: 10.1056/NEJM199802123380703. PubMed DOI
Trottier H, Mahmud S, Costa MC, Sobrinho JP, Duarte-Franco E, Rohan TE, et al. Human papillomavirus infections with multiple types and risk of cervical neoplasia. Cancer Epidemiol Biomarkers Prev. 2006;15:1274–80. doi: 10.1158/1055-9965.EPI-06-0129. PubMed DOI
Wieland U, Jurk S, Weissenborn S, Krieg T, Pfister H, Ritzkowsky A. Erythroplasia of queyrat: coinfection with cutaneous carcinogenic human papillomavirus type 8 and genital papillomaviruses in a carcinoma in situ. J Invest Dermatol. 2000;115:396–401. doi: 10.1046/j.1523-1747.2000.00069.x. PubMed DOI
Nakajima H, Teraishi M, Tarutani M, Sano S. High prevalence of coinfection with mucosal high-risk type HPV (HR-HPV) and cutaneous HR-HPV in Bowen’s disease in the fingers. J Dermatol Sci. 2010;60:50–2. doi: 10.1016/j.jdermsci.2010.07.009. PubMed DOI
Gross JA, Perniciaro C. Histopathologic variants of cutaneous squamous cell carcinoma in situ with analysis of multicentric subtypes: Possible relationship to human papillomavirus. Am J Dermatopathol. 2015;37:680–5. doi: 10.1097/DAD.0000000000000354. PubMed DOI
Hersey P, Haran G, Hasic E, Edwards A. Alteration of T cell subsets and induction of suppressor T cell activity in normal subjects after exposure to sunlight. J Immunol. 1983;131:171–4. PubMed