Application of zinc chloride precipitation method for rapid isolation and concentration of infectious Pectobacterium spp. and Dickeya spp. lytic bacteriophages from surface water and plant and soil extracts
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26099750
PubMed Central
PMC4691450
DOI
10.1007/s12223-015-0411-1
PII: 10.1007/s12223-015-0411-1
Knihovny.cz E-resources
- MeSH
- Bacteriophages isolation & purification physiology MeSH
- Time Factors MeSH
- Chlorides metabolism MeSH
- Enterobacteriaceae virology MeSH
- Environmental Microbiology * MeSH
- Pectobacterium virology MeSH
- Plants virology MeSH
- Zinc Compounds metabolism MeSH
- Virology methods MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Chlorides MeSH
- Zinc Compounds MeSH
- zinc chloride MeSH Browser
This is the first report describing precipitation of bacteriophage particles with zinc chloride as a method of choice to isolate infectious lytic bacteriophages against Pectobacterium spp. and Dickeya spp. from environmental samples. The isolated bacteriophages are ready to use to study various (ecological) aspects of bacteria-bacteriophage interactions. The method comprises the well-known precipitation of phages from aqueous extracts of the test material by addition of ZnCl2, resuscitation of bacteriophage particles in Ringer's buffer to remove the ZnCl2 excess and a soft agar overlay assay with the host bacterium to isolate infectious individual phage plaques. The method requires neither an enrichment step nor other steps (e. g., PEG precipitation, ultrafiltration, or ultracentrifugation) commonly used in other procedures and results in isolation of active viable bacteriophage particles.
See more in PubMed
Abedon ST. Phage evolution and ecology. Adv Appl Microbiol. 2009;67:1–45. doi: 10.1016/S0065-2164(08)01001-0. PubMed DOI
Adriaenssens EM, Van Vaerenbergh J, Vandenheuvel D, Dunon V, Ceyssens PJ, De Proft M, Kropinski AM, Noben JP, Maes M, Lavigne R. T4-related bacteriophage LIMEstone isolates for the control of soft rot on potato caused by ‘Dickeya solani’. PLoS One. 2012;7:e33227. doi: 10.1371/journal.pone.0033227. PubMed DOI PMC
Arakawa T, Timasheff SN. Mechanism of protein salting in and salting out by divalent cation salts: balance between hydration and salt binding. Biochemistry. 1984;23:5912–5923. doi: 10.1021/bi00320a004. PubMed DOI
Ashelford KE, Day MJ, Fry JC. Elevated abundance of bacteriophage infecting bacteria in soil. Appl Environ Microbiol. 2003;69:285–289. doi: 10.1128/AEM.69.1.285-289.2003. PubMed DOI PMC
Czajkowski R, de Boer WJ, Velvis H, van Der Wolf JM. Systemic colonization of potato plants by a soilborne, green fluorescent protein-tagged strain of Dickeya sp. biovar 3. Phytopathology. 2010;100:134–142. doi: 10.1094/PHYTO-100-2-0134. PubMed DOI
Czajkowski R, Ozymko Z, Lojkowska E. Isolation and characterization of novel soilborne lytic bacteriophages infecting Dickeya spp. biovar 3 (‘D. solani’) Plant Pathol. 2013;63:758–772. doi: 10.1111/ppa.12157. DOI
Czajkowski R, Ozymko Z, Zwirowski S, Lojkowska E. Complete genome sequence of a broad-host-range lytic Dickeya spp. bacteriophage ϕD5. Arch Virol. 2014;159:3153–3155. doi: 10.1007/s00705-014-2170-8. PubMed DOI PMC
Czajkowski R, Ozymko Z, de Jager V, Siwinska J, Smolarska A, Ossowicki A, Narajczyk M, Lojkowska E. Genomic, proteomic and morphological characterization of two novel broad host lytic bacteriophages ΦPD10.3 and ΦPD23.1 infecting pectinolytic Pectobacterium spp. and Dickeya spp. PLoS One. 2015;10(3):e0119812. doi: 10.1371/journal.pone.0119812. PubMed DOI PMC
D’Herelle F. The Bacteriophage and its clinical applications. Am J Med Sci. 1930;180:573. doi: 10.1097/00000441-193010000-00019. DOI
Gardan L, Gouy C, Christen R, Samson R. Elevation of three subspecies of Pectobacterium carotovorum to species level: Pectobacterium atrosepticum sp. nov., Pectobacterium betavasculorum sp. nov. and Pectobacterium wasabiae sp. nov. Int J Syst Evol Microbiol. 2003;53:381–391. doi: 10.1099/ijs.0.02423-0. PubMed DOI
Hadley P. The Twort-D’Herelle Phenomenon: a critical review and presentation of a new conception (homogamic theory) of bacteriophage action. J Inf Dis. 1928;42:263–434. doi: 10.1093/infdis/42.4.263. DOI
Jones JB, Jackson LE, Balogh B, Obradovic A, Iriarte FB, Momol MT. Bacteriophages for plant disease control. Annu Rev Phytopathol. 2008;45:245–262. doi: 10.1146/annurev.phyto.45.062806.094411. PubMed DOI
Perombelon MCM (1991) The genus Erwinia. In: Balows A, Trueper HG, Dworkin M (eds) The Prokaryotes: a handbook on the biology of bacteria: ecophysiology, isolation, identification and application, vol III. pp 2899–2921
Santos MA. An improved method for the small scale preparation of bacteriophage DNA based on phage precipitation by zinc chloride. Nucleic Acids Res. 1991;19:5442. doi: 10.1093/nar/19.19.5442. PubMed DOI PMC
Seeley ND, Primrose SB. A review: the isolation of bacteriophages from the environment. J Appl Microbiol. 1982;53:1–17. PubMed
Toth IK, et al. Dickeya species: an emerging problem for potato production in Europe. Plant Pathol. 2011;60:385–399. doi: 10.1111/j.1365-3059.2011.02427.x. DOI
Twest R, Kropinski AM (2009) Bacteriophage enrichment from water and soil. In: Clokie MJ, Kropinski A (eds) Bacteriophages, vol 501. Methods in Molecular Biology™. Humana Press, pp 15–21. PubMed
van der Wolf JM, Nijhuis EH, Kowalewska MJ, Saddler GS, Parkinson N, Elphinstone JG, Pritchard L, Toth IK, Lojkowska E, Potrykus M, Waleron M, de Vos P, Cleenwerck I, Pirhonen M, Garlant L, Hélias V, Pothier JF, Pflüger V, Duffy B, Tsror L, Manulis S. Dickeya solani sp. nov., a pectinolytic plant pathogenic bacterium isolated from potato (Solanum tuberosum) Int J Syst Evol Microbiol. 2014;64:768–774. doi: 10.1099/ijs.0.052944-0. PubMed DOI
Wommack KE, Williamson KE, Helton RR, Bench SR, Winget DM. Methods for the isolation of viruses from environmental samples. Methods Mol Biol. 2008;501:3–14. doi: 10.1007/978-1-60327-164-6_1. PubMed DOI