Iron(II) supramolecular helicates condense plasmid DNA and inhibit vital DNA-related enzymatic activities
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26103944
DOI
10.1002/chem.201501307
Knihovny.cz E-zdroje
- Klíčová slova
- DNA, condensation, enzymes, helical structures, inhibition,
- MeSH
- DNA řízené RNA-polymerasy antagonisté a inhibitory MeSH
- DNA-topoisomerasy I metabolismus MeSH
- Escherichia coli enzymologie MeSH
- inhibitory enzymů chemie farmakologie MeSH
- inhibitory topoisomerasy I chemie farmakologie MeSH
- kruhová DNA chemie metabolismus ultrastruktura MeSH
- molekulární modely MeSH
- plazmidy chemie metabolismus ultrastruktura MeSH
- restrikční enzymy antagonisté a inhibitory MeSH
- železnaté sloučeniny chemie farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA řízené RNA-polymerasy MeSH
- DNA-topoisomerasy I MeSH
- inhibitory enzymů MeSH
- inhibitory topoisomerasy I MeSH
- kruhová DNA MeSH
- restrikční enzymy MeSH
- železnaté sloučeniny MeSH
The dinuclear iron(II) supramolecular helicates [Fe2 L3 ]Cl4 (L=C25 H20 N4 ) bind to DNA through noncovalent (i.e., hydrogen-bonding, electrostatic) interactions and exhibit antimicrobial and anticancer effects. In this study, we show that the helicates condense plasmid DNA with a much higher potency than conventional DNA-condensing agents. Notably, molecules of DNA in the presence of the M enantiomer of [Fe2 L3 ]Cl4 do not form intermolecular aggregates typically formed by other condensing agents, such as spermidine or spermine. The helicates inhibit the activity of several DNA-processing enzymes, such as RNA polymerase, DNA topoisomerase I, deoxyribonuclease I, and site-specific restriction endonucleases. However, the results also indicate that the DNA condensation induced by the helicates does not play a crucial role in these inhibition reactions. The mechanisms for the inhibitory effects of [Fe2 L3 ]Cl4 helicates on DNA-related enzymatic activities have been proposed.
Citace poskytuje Crossref.org
Metallohelix vectors for efficient gene delivery via cationic DNA nanoparticles