The major facilitator superfamily transporter Knq1p modulates boron homeostasis in Kluyveromyces lactis
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26142045
DOI
10.1007/s12223-015-0414-y
PII: 10.1007/s12223-015-0414-y
Knihovny.cz E-resources
- MeSH
- Boron metabolism MeSH
- Fungal Proteins genetics metabolism MeSH
- Homeostasis MeSH
- Kluyveromyces enzymology genetics metabolism MeSH
- Membrane Transport Proteins genetics metabolism MeSH
- Promoter Regions, Genetic MeSH
- Gene Expression Regulation, Fungal MeSH
- Saccharomyces cerevisiae genetics metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Boron MeSH
- Fungal Proteins MeSH
- Membrane Transport Proteins MeSH
Boron is an essential micronutrient for living cells, yet its excess causes toxicity. To date, the mechanisms of boron toxicity are poorly understood. Recently, the ScATR1 gene has been identified encoding the main boron efflux pump in Saccharomyces cerevisiae. In this study, we analyzed the ScATR1 ortholog in Kluyveromyces lactis--the KNQ1 gene, to understand whether it participates in boron stress tolerance. We found that the KNQ1 gene, encoding a permease belonging to the major facilitator superfamily, is required for K. lactis boron tolerance. Deletion of the KNQ1 gene led to boron sensitivity and its overexpression increased K. lactis boron tolerance. The KNQ1 expression was induced by boron and the intracellular boron concentration was controlled by Knq1p. The KNQ1 promoter contains two putative binding motifs for the AP-1-like transcription factor KlYap1p playing a central role in oxidative stress defense. Our results indicate that the induction of the KNQ1 expression requires the presence of KlYap1p and that Knq1p like its ortholog ScAtr1p in S. cerevisiae functions as a boron efflux pump providing boron resistance in K. lactis.
See more in PubMed
Anal Sci. 2003 Aug;19(8):1167-71 PubMed
FEMS Yeast Res. 2007 Aug;7(5):715-21 PubMed
Nature. 2002 Nov 21;420(6913):337-40 PubMed
FEMS Microbiol Lett. 2007 Feb;267(2):230-5 PubMed
Am J Epidemiol. 2008 May 1;167(9):1070-80 PubMed
Plant Physiol. 1997 Nov;115(3):901-6 PubMed
FEMS Microbiol Lett. 2006 Sep;262(2):216-22 PubMed
J Biol Chem. 1997 Sep 12;272(37):23224-30 PubMed
BMC Genomics. 2013 Dec 18;14:901 PubMed
Mol Cell Biol. 2009 Jul;29(13):3665-74 PubMed
PLoS One. 2011;6(11):e27772 PubMed
Curr Genet. 2004 Feb;45(1):1-8 PubMed
Mol Cell. 2004 Sep 10;15(5):677-87 PubMed
Annu Rev Plant Biol. 2004;55:109-39 PubMed
Oncol Rep. 2004 Apr;11(4):887-92 PubMed
Biochem Biophys Res Commun. 2011 Jun 17;409(4):748-51 PubMed
Mol Gen Genet. 1994 May 10;243(3):325-33 PubMed
Nucleic Acids Res. 2001 May 1;29(9):e45 PubMed
Biochim Biophys Acta. 2014 Nov;1839(11):1295-306 PubMed
J Nutr. 1998 Dec;128(12):2488-93 PubMed
Bioinformatics. 2004 Oct 12;20(15):2471-2 PubMed
Methods Mol Biol. 2000;132:365-86 PubMed
Plant Signal Behav. 2008 Jan;3(1):24-6 PubMed
Am J Physiol Cell Physiol. 2001 Jul;281(1):C33-45 PubMed
Anal Biochem. 1976 May 7;72:248-54 PubMed
FEMS Yeast Res. 2006 May;6(3):345-55 PubMed
Biomolecules. 2014 Feb 25;4(1):252-67 PubMed
FEMS Yeast Res. 2005 Feb;5(4-5):323-9 PubMed
PLoS One. 2014 Jan 09;9(1):e83330 PubMed
Nature. 2002 Jan 31;415(6871):545-9 PubMed
J Exp Biol. 1999 Jun;202 (Pt 12):1649-54 PubMed