Diffusion Kurtosis Imaging Detects Microstructural Alterations in Brain of α-Synuclein Overexpressing Transgenic Mouse Model of Parkinson's Disease: A Pilot Study
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26153486
DOI
10.1007/s12640-015-9537-9
PII: 10.1007/s12640-015-9537-9
Knihovny.cz E-zdroje
- Klíčová slova
- Diffusion kurtosis imaging, Parkinson’s disease, TBSS, TNWT-61, Transgenic mice, α-Synuclein,
- MeSH
- alfa-synuklein metabolismus MeSH
- difuzní magnetická rezonance metody MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- mozek metabolismus patologie MeSH
- myši transgenní MeSH
- myši MeSH
- Parkinsonova nemoc metabolismus patologie MeSH
- pilotní projekty MeSH
- pohybová aktivita MeSH
- zobrazování difuzních tenzorů metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alfa-synuklein MeSH
- SNCA protein, human MeSH Prohlížeč
Evidence suggests that accumulation and aggregation of α-synuclein contribute to the pathogenesis of Parkinson's disease (PD). The aim of this study was to evaluate whether diffusion kurtosis imaging (DKI) will provide a sensitive tool for differentiating between α-synuclein-overexpressing transgenic mouse model of PD (TNWT-61) and wild-type (WT) littermates. This experiment was designed as a proof-of-concept study and forms a part of a complex protocol and ongoing translational research. Nine-month-old TNWT-61 mice and age-matched WT littermates underwent behavioral tests to monitor motor impairment and MRI scanning using 9.4 Tesla system in vivo. Tract-based spatial statistics (TBSS) and the DKI protocol were used to compare the whole brain white matter of TNWT-61 and WT mice. In addition, region of interest (ROI) analysis was performed in gray matter regions such as substantia nigra, striatum, hippocampus, sensorimotor cortex, and thalamus known to show higher accumulation of α-synuclein. For the ROI analysis, both DKI (6 b-values) protocol and conventional (2 b-values) diffusion tensor imaging (cDTI) protocol were used. TNWT-61 mice showed significant impairment of motor coordination. With the DKI protocol, mean, axial, and radial kurtosis were found to be significantly elevated, whereas mean and radial diffusivity were decreased in the TNWT-61 group compared to that in the WT controls with both TBSS and ROI analysis. With the cDTI protocol, the ROI analysis showed decrease in all diffusivity parameters in TNWT-61 mice. The current study provides evidence that DKI by providing both kurtosis and diffusivity parameters gives unique information that is complementary to cDTI for in vivo detection of pathological changes that underlie PD-like symptomatology in TNWT-61 mouse model of PD. This result is a crucial step in search for a candidate diagnostic biomarker with translational potential and relevance for human studies.
Department of Pharmacology Faculty of Medicine Masaryk University Brno Czech Republic
Institute of Scientific Instruments Academy of Sciences of the Czech Republic Brno Czech Republic
Zobrazit více v PubMed
Neuroimage Clin. 2013 Oct 14;3:481-8 PubMed
Radiology. 2012 Nov;265(2):645-6; author reply 646-7 PubMed
PLoS One. 2013;8(3):e59032 PubMed
Neuroimage. 2004;23 Suppl 1:S208-19 PubMed
Mov Disord. 2011 May;26(6):1072-82 PubMed
NeuroRx. 2005 Jul;2(3):495-503 PubMed
Stroke. 2012 Aug;43(8):2252-4 PubMed
Magn Reson Med. 2005 Jun;53(6):1432-40 PubMed
J Neurosci. 2004 Oct 20;24(42):9434-40 PubMed
NMR Biomed. 2014 Aug;27(8):948-57 PubMed
Eur J Neurosci. 2011 Apr;33(8):1551-60 PubMed
AJR Am J Roentgenol. 2014 Jan;202(1):W26-33 PubMed
Biol Psychiatry. 2011 Sep 1;70(5):449-57 PubMed
Neurology. 2009 Apr 21;72(16):1374-5 PubMed
Neuroimage. 2012 Jan 2;59(1):467-77 PubMed
Magn Reson Med. 1996 Dec;36(6):893-906 PubMed
NMR Biomed. 2010 Aug;23(7):698-710 PubMed
Magn Reson Med. 2013 Apr;69(4):1115-21 PubMed
J Neurol. 2011 Jul;258(7):1254-60 PubMed
Neurology. 2013 Feb 26;80(9):857-64 PubMed
J Neurosci Methods. 2003 Mar 15;123(2):189-200 PubMed
Neurotox Res. 2011 Aug;20(2):170-81 PubMed
Neuroimage. 2006 Jul 15;31(4):1487-505 PubMed
Front Biosci (Elite Ed). 2014 Jun 01;6:360-9 PubMed
Neurotherapeutics. 2012 Apr;9(2):297-314 PubMed
Neurobiol Dis. 2007 Jun;26(3):590-6 PubMed
Neuroscience. 2006 Nov 3;142(4):1245-53 PubMed
Magn Reson Imaging. 2013 Nov;31(9):1501-6 PubMed
Neurotox Res. 2009 Aug;16(2):127-39 PubMed
Neuroimage. 2012 Nov 1;63(2):653-62 PubMed
Neuroradiology. 2014 Mar;56(3):251-8 PubMed
Radiology. 2011 Oct;261(1):210-7 PubMed
World Neurosurg. 2014 Jul-Aug;82(1-2):96-109 PubMed
Neurology. 2009 Apr 21;72(16):1378-84 PubMed
Hum Brain Mapp. 2002 Nov;17(3):143-55 PubMed
Brain Struct Funct. 2011 Jun;216(2):123-35 PubMed
Brain Res. 2012 Apr 27;1451:100-9 PubMed
Exp Neurol. 2008 Jan;209(1):22-7 PubMed
Mov Disord. 2013 Jan;28(1):3-7 PubMed
Neuroscience. 2014 Sep 26;277:647-64 PubMed
Exp Neurol. 2012 Oct;237(2):318-34 PubMed