Diffusion Kurtosis Imaging Detects Microstructural Changes in a Methamphetamine-Induced Mouse Model of Parkinson's Disease

. 2019 Nov ; 36 (4) : 724-735. [epub] 20190618

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31209787

Grantová podpora
MUNI/A/1550/2018 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015062 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.1.05/2.1.00/01.0017 Ministerstvo Školství, Mládeže a Tělovýchovy
No. CZ.02.1.01/0.0/0.0/16_013/0001775 European Regional Development Fund
RVO:68081731 Ministerstvo Školství, Mládeže a Tělovýchovy (CZ)
2017-1.2.1-NKP-2017-00002 Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (HU)
EFOP-3.6.1-16-2016-00008 EFOP
KTIA_13_NAP-A-II/20 Országos Tudományos Kutatási Alapprogramok
Junior Scientist Support Project Masarykova Univerzita

Odkazy

PubMed 31209787
DOI 10.1007/s12640-019-00068-0
PII: 10.1007/s12640-019-00068-0
Knihovny.cz E-zdroje

Methamphetamine (METH) abuse is known to increase the risk of Parkinson's disease (PD) due to its dopaminergic neurotoxicity. This is the rationale for the METH model of PD developed by toxic METH dosing (10 mg/kg four times every 2 h) which features robust neurodegeneration and typical motor impairment in mice. In this study, we used diffusion kurtosis imaging to reveal microstructural brain changes caused by METH-induced neurodegeneration. The METH-treated mice and saline-treated controls underwent diffusion kurtosis imaging scanning using the Bruker Avance 9.4 Tesla MRI system at two time-points: 5 days and 1 month to capture both early and late changes induced by METH. At 5 days, we found a decrease in kurtosis in substantia nigra, striatum and sensorimotor cortex, which is likely to indicate loss of DAergic neurons. At 1 month, we found an increase of kurtosis in striatum and sensorimotor cortex and hippocampus, which may reflect certain recovery processes. Furthermore, we performed tract-based spatial statistics analysis in the white matter and at 1 month, we observed increased kurtosis in ventral nucleus of the lateral lemniscus and some of the lateral thalamic nuclei. No changes were present at the early stage. This study confirms the ability of diffusion kurtosis imaging to detect microstructural pathological processes in both grey and white matter in the METH model of PD. The exact mechanisms underlying the kurtosis changes remain to be elucidated but kurtosis seems to be a valuable biomarker for tracking microstructural brain changes in PD and potentially other neurodegenerative disorders.

Komentář v

PubMed

Zobrazit více v PubMed

Prog Neurobiol. 2017 Aug;155:149-170 PubMed

Neurotoxicology. 2006 Jan;27(1):131-6 PubMed

Brain Res. 2000 Jul 21;871(2):259-70 PubMed

Brain Res Bull. 2018 May;139:91-98 PubMed

Neurotherapeutics. 2012 Apr;9(2):297-314 PubMed

FEBS Lett. 2012 Sep 21;586(19):3222-8 PubMed

Neurotherapeutics. 2007 Jul;4(3):316-29 PubMed

Neuropsychopharmacology. 2005 Jun;30(6):1128-37 PubMed

Ann N Y Acad Sci. 1997 May 30;820:123-38 PubMed

Neuroscience. 2006 Nov 3;142(4):1245-53 PubMed

CMAJ. 2016 Nov 1;188(16):1157-1165 PubMed

J Neurosci. 2001 Dec 1;21(23):9414-8 PubMed

Neuroimage. 2016 Nov 15;142:421-430 PubMed

NMR Biomed. 2017 Nov;30(11): PubMed

Neuroimage. 2015 Nov 1;121:20-8 PubMed

Neuroscience. 2014 Sep 26;277:647-64 PubMed

Brain Res. 1986 Feb 12;365(1):15-20 PubMed

Ann N Y Acad Sci. 2008 Oct;1139:345-9 PubMed

Cold Spring Harb Perspect Med. 2011 Sep;1(1):a009316 PubMed

Trends Neurosci. 1996 Aug;19(8):312-8 PubMed

Neurotox Res. 2015 Nov;28(4):281-9 PubMed

Brain Res Bull. 2005 May 15;65(5):405-13 PubMed

Brain Behav Immun. 2017 Mar;61:197-208 PubMed

Brain Res Rev. 2008 Jun;58(1):192-208 PubMed

Hum Brain Mapp. 2017 Jul;38(7):3704-3722 PubMed

Brain Res. 1996 Oct 28;738(1):172-5 PubMed

JAMA. 2011 Aug 24;306(8):814 PubMed

J Neurosci. 2004 Oct 20;24(42):9434-40 PubMed

PLoS One. 2013;8(3):e59032 PubMed

Med Image Anal. 2001 Jun;5(2):143-56 PubMed

Hum Brain Mapp. 2002 Nov;17(3):143-55 PubMed

J Neurosci Methods. 2003 Mar 15;123(2):189-200 PubMed

Neurology. 2009 Apr 21;72(16):1378-84 PubMed

Neuroradiology. 2014 Mar;56(3):251-8 PubMed

J Neuroimaging. 2007 Apr;17 Suppl 1:27S-30S PubMed

J Neurosci. 2004 Jun 30;24(26):6028-36 PubMed

Front Syst Neurosci. 2015 Mar 24;9:43 PubMed

J Adv Pharm Technol Res. 2016 Oct-Dec;7(4):123-126 PubMed

J Pharmacol Exp Ther. 1992 Nov;263(2):617-26 PubMed

Neuroimage. 2006 Jul 15;31(4):1487-505 PubMed

Drug Alcohol Depend. 2018 Jun 1;187:134-140 PubMed

J Pharmacol Exp Ther. 1997 Aug;282(2):834-8 PubMed

Ann N Y Acad Sci. 2008 Oct;1139:127-39 PubMed

Radiology. 2011 Oct;261(1):210-7 PubMed

Neurotox Res. 2009 Aug;16(2):127-39 PubMed

Mol Neurodegener. 2009 Nov 16;4:47 PubMed

Neuroimage Clin. 2013 Oct 14;3:481-8 PubMed

Magn Reson Med. 2000 Aug;44(2):283-91 PubMed

Eur J Pharmacol. 2014 Dec 15;745:243-8 PubMed

Brain Struct Funct. 2011 Jun;216(2):123-35 PubMed

Neuroscience. 2008 Jan 24;151(2):533-43 PubMed

Brain Res. 2014 Jun 27;1570:35-42 PubMed

Magn Reson Med. 2009 Jun;61(6):1336-49 PubMed

Neurotox Res. 2005 Nov;8(3-4):199-206 PubMed

Food Funct. 2010 Oct;1(1):15-31 PubMed

Parkinsons Dis. 2013;2013:308052 PubMed

Neurobiol Dis. 2012 Feb;45(2):810-20 PubMed

Neurotox Res. 2010 Jul;18(1):48-58 PubMed

Neurotox Res. 2011 Aug;20(2):170-81 PubMed

J Clin Neurosci. 2018 Apr;50:199-202 PubMed

Ann N Y Acad Sci. 2008 Oct;1141:195-220 PubMed

Radiology. 1996 Dec;201(3):637-48 PubMed

Exp Neurol. 2007 Nov;208(1):1-25 PubMed

J Neurol. 2011 Jul;258(7):1254-60 PubMed

J Neurochem. 2005 Feb;92(4):790-7 PubMed

Arch Gen Psychiatry. 2004 Jan;61(1):73-84 PubMed

Eur J Neurol. 2008 Sep;15 Suppl 2:2-7 PubMed

J Neurochem. 2016 Mar;136(6):1259-1269 PubMed

NMR Biomed. 2010 Aug;23(7):698-710 PubMed

Toxicol Lett. 2014 Oct 1;230(1):19-27 PubMed

NMR Biomed. 1995 Nov-Dec;8(7-8):333-44 PubMed

Front Hum Neurosci. 2014 Jul 22;8:537 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...