CCR5 Targeted Cell Therapy for HIV and Prevention of Viral Escape
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
26225991
PubMed Central
PMC4576177
DOI
10.3390/v7082816
PII: v7082816
Knihovny.cz E-zdroje
- Klíčová slova
- CCR5, CCR5-delta32, HIV-1, chemokine receptor, gene therapy, tropism, viral escape,
- MeSH
- biologická terapie metody MeSH
- genový knockdown MeSH
- HIV infekce terapie MeSH
- lidé MeSH
- receptory CCR5 genetika metabolismus MeSH
- receptory HIV antagonisté a inhibitory genetika metabolismus MeSH
- transplantace kmenových buněk MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- CCR5 protein, human MeSH Prohlížeč
- receptory CCR5 MeSH
- receptory HIV MeSH
Allogeneic transplantation with CCR5-delta 32 (CCR5-d32) homozygous stem cells in an HIV infected individual in 2008, led to a sustained virus control and probably eradication of HIV. Since then there has been a high degree of interest to translate this approach to a wider population. There are two cellular ways to do this. The first one is to use a CCR5 negative cell source e.g., hematopoietic stem cells (HSC) to copy the initial finding. However, a recent case of a second allogeneic transplantation with CCR5-d32 homozygous stem cells suffered from viral escape of CXCR4 quasi-species. The second way is to knock down CCR5 expression by gene therapy. Currently, there are five promising techniques, three of which are presently being tested clinically. These techniques include zinc finger nucleases (ZFN), clustered regularly interspaced palindromic repeats/CRISPR-associated protein 9 nuclease (CRISPR/Cas9), transcription activator-like effectors nuclease (TALEN), short hairpin RNA (shRNA), and a ribozyme. While there are multiple gene therapy strategies being tested, in this review we reflect on our current knowledge of inhibition of CCR5 specifically and whether this approach allows for consequent viral escape.
Calimmune Inc Los Angeles CA 90024 USA
Cellex GmbH Fiedlerstr 36 01307 Dresden Germany
Faculty of Medicine University of New South Wales Sydney 2052 NSW Australia
Zobrazit více v PubMed
Doms R.W. Beyond receptor expression: The influence of receptor conformation, density, and affinity in HIV-1 infection. Virology. 2000;276:229–237. doi: 10.1006/viro.2000.0612. PubMed DOI
Weiss R.A. Thirty years on: HIV receptor gymnastics and the prevention of infection. BMC Biol. 2013;11:e57. doi: 10.1186/1741-7007-11-57. PubMed DOI PMC
Connor R.I., Sheridan K.E., Ceradini D., Choe S., Landau N.R. Change in coreceptor use correlates with disease progression in HIV-1-infected individuals. J. Exp. Med. 1997;185:621–628. doi: 10.1084/jem.185.4.621. PubMed DOI PMC
Scarlatti G., Tresoldi E., Bjorndal A., Fredriksson R., Colognesi C., Deng H.K., Malnati M.S., Plebani A., Siccardi A.G., Littman D.R., et al. In vivo evolution of HIV-1 co-receptor usage and sensitivity to chemokine-mediated suppression. Nat. Med. 1997;3:1259–1265. doi: 10.1038/nm1197-1259. PubMed DOI
Samson M., Libert F., Doranz B.J., Rucker J., Liesnard C., Farber C.M., Saragosti S., Lapoumeroulie C., Cognaux J., Forceille C., et al. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature. 1996;382:722–725. doi: 10.1038/382722a0. PubMed DOI
Nazari R., Joshi S. CCR5 as target for HIV-1 gene therapy. Curr. Gene Ther. 2008;8:264–272. doi: 10.2174/156652308785160674. PubMed DOI
Schroers R., Davis C.M., Wagner H.J., Chen S.Y. Lentiviral transduction of human T-lymphocytes with a RANTES intrakine inhibits human immunodeficiency virus type 1 infection. Gene Ther. 2002;9:889–897. PubMed
Bai X., Chen J.D., Yang A.G., Torti F., Chen S.Y. Genetic co-inactivation of macrophage- and T-tropic HIV-1 chemokine coreceptors CCR-5 and CXCR-4 by intrakines. Gene Ther. 1998;5:984–994. doi: 10.1038/sj.gt.3300667. PubMed DOI
Luis Abad J., Gonzalez M.A., del Real G., Mira E., Manes S., Serrano F., Bernad A. Novel interfering bifunctional molecules against the CCR5 coreceptor are efficient inhibitors of HIV-1 infection. Mol. Ther. 2003;8:475–484. doi: 10.1016/S1525-0016(03)00202-8. PubMed DOI
Li L., Wu L.P., Chandrasegaran S. Functional domains in Fok I restriction endonuclease. Proc. Natl. Acad. Sci. USA. 1992;89:4275–4279. doi: 10.1073/pnas.89.10.4275. PubMed DOI PMC
Kim Y.G., Cha J., Chandrasegaran S. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA. 1996;93:1156–1160. doi: 10.1073/pnas.93.3.1156. PubMed DOI PMC
Tebas P., Stein D., Tang W.W., Frank I., Wang S.Q., Lee G., Spratt S.K., Surosky R.T., Giedlin M.A., Nichol G., et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 2014;370:901–910. doi: 10.1056/NEJMoa1300662. PubMed DOI PMC
Mussolino C., Morbitzer R., Lutge F., Dannemann N., Lahaye T., Cathomen T. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res. 2011;39:9283–9293. doi: 10.1093/nar/gkr597. PubMed DOI PMC
Holkers M., Maggio I., Liu J., Janssen J.M., Miselli F., Mussolino C., Recchia A., Cathomen T., Goncalves M.A. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res. 2013;41:e63. doi: 10.1093/nar/gks1446. PubMed DOI PMC
Mock U., Machowicz R., Hauber I., Horn S., Abramowski P., Berdien B., Hauber J., Fehse B. mRNA transfection of a novel TAL effector nuclease (TALEN) facilitates efficient knockout of HIV co-receptor CCR5. Nucleic Acids Res. 2015;43:5560–5571. doi: 10.1093/nar/gkv469. PubMed DOI PMC
Cho S.W., Kim S., Kim J.M., Kim J.S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 2013;31:230–232. doi: 10.1038/nbt.2507. PubMed DOI
Martinez M.A., Gutierrez A., Armand-Ugon M., Blanco J., Parera M., Gomez J., Clotet B., Este J.A. Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication. AIDS. 2002;16:2385–2390. doi: 10.1097/00002030-200212060-00002. PubMed DOI
Qin X.F., An D.S., Chen I.S., Baltimore D. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc. Natl. Acad. Sci. USA. 2003;100:183–188. doi: 10.1073/pnas.232688199. PubMed DOI PMC
Boden D., Pusch O., Lee F., Tucker L., Ramratnam B. Human immunodeficiency virus type 1 escape from RNA interference. J. Virol. 2003;77:11531–11535. doi: 10.1128/JVI.77.21.11531-11535.2003. PubMed DOI PMC
Das A.T., Brummelkamp T.R., Westerhout E.M., Vink M., Madiredjo M., Bernards R., Berkhout B. Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J. Virol. 2004;78:2601–2605. doi: 10.1128/JVI.78.5.2601-2605.2004. PubMed DOI PMC
Burke B.P., Levin B.R., Zhang J., Sahakyan A., Boyer J., Carroll M.V., Colon J.C., Keech N., Rezek V., Bristol G., et al. Engineering Cellular Resistance to HIV-1 Infection In Vivo Using a Dual Therapeutic Lentiviral Vector. Mol. Ther. Nucleic Acids. 2015;4:e236. doi: 10.1038/mtna.2015.10. PubMed DOI
Wolstein O., Boyd M., Millington M., Impey H., Boyer J., Howe A., Delebecque F., Cornetta K., Rothe M., Baum C., et al. Preclinical safety and efficacy of an anti-HIV-1 lentiviral vector containing a short hairpin RNA to CCR5 and the C46 fusion inhibitor. Mol. Ther. Methods Clin. Dev. 2014;1:e11. doi: 10.1038/mtm.2013.11. PubMed DOI PMC
Shimizu S., Kamata M., Kittipongdaja P., Chen K.N., Kim S., Pang S., Boyer J., Qin F.X., An D.S., Chen I.S. Characterization of a potent non-cytotoxic shRNA directed to the HIV-1 co-receptor CCR5. Genet. Vaccines Ther. 2009;7:e8. doi: 10.1186/1479-0556-7-8. PubMed DOI PMC
Li W., Yu M., Bai L., Bu D., Xu X. Downregulation of CCR5 expression on cells by recombinant adenovirus containing antisense CCR5, a possible measure to prevent HIV-1 from entering target cells. J. Acquir. Immune Defic. Syndr. 2006;43:516–522. doi: 10.1097/01.qai.0000243102.95640.92. PubMed DOI
Sarver N., Cantin E.M., Chang P.S., Zaia J.A., Ladne P.A., Stephens D.A., Rossi J.J. Ribozymes as potential anti-HIV-1 therapeutic agents. Science. 1990;247:1222–1225. doi: 10.1126/science.2107573. PubMed DOI
Rossi J.J. Targeted cleavage: Tuneable cis-cleaving ribozymes. Proc. Natl. Acad. Sci. USA. 2007;104:14881–14882. doi: 10.1073/pnas.0707141104. PubMed DOI PMC
Macpherson J.L., Boyd M.P., Arndt A.J., Todd A.V., Fanning G.C., Ely J.A., Elliott F., Knop A., Raponi M., Murray J., et al. Long-term survival and concomitant gene expression of ribozyme-transduced CD4+ T-lymphocytes in HIV-infected patients. J. Gene Med. 2005;7:552–564. doi: 10.1002/jgm.705. PubMed DOI
Sun L.Q., Wang L., Gerlach W.L., Symonds G. Target sequence-specific inhibition of HIV-1 replication by ribozymes directed to tat RNA. Nucleic Acids Res. 1995;23:2909–2913. doi: 10.1093/nar/23.15.2909. PubMed DOI PMC
Amado R.G., Mitsuyasu R.T., Rosenblatt J.D., Ngok F.K., Bakker A., Cole S., Chorn N., Lin L.S., Bristol G., Boyd M.P., et al. Anti-human immunodeficiency virus hematopoietic progenitor cell-delivered ribozyme in a phase I study: Myeloid and lymphoid reconstitution in human immunodeficiency virus type-1-infected patients. Hum. Gene Ther. 2004;15:251–262. doi: 10.1089/104303404322886101. PubMed DOI
Mitsuyasu R.T., Merigan T.C., Carr A., Zack J.A., Winters M.A., Workman C., Bloch M., Lalezari J., Becker S., Thornton L., et al. Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells. Nat. Med. 2009;15:285–292. doi: 10.1038/nm.1932. PubMed DOI PMC
DiGiusto D.L., Krishnan A., Li L., Li H., Li S., Rao A., Mi S., Yam P., Stinson S., Kalos M., et al. RNA-based gene therapy for HIV with lentiviral vector-modified CD34(+) cells in patients undergoing transplantation for AIDS-related lymphoma. Sci. Transl. Med. 2010;2:36ra43. doi: 10.1126/scitranslmed.3000931. PubMed DOI PMC
Yang A.G., Bai X., Huang X.F., Yao C., Chen S. Phenotypic knockout of HIV type 1 chemokine coreceptor CCR-5 by intrakines as potential therapeutic approach for HIV-1 infection. Proc. Natl. Acad. Sci. USA. 1997;94:11567–11572. doi: 10.1073/pnas.94.21.11567. PubMed DOI PMC
Steinberger P., Andris-Widhopf J., Buhler B., Torbett B.E., Barbas C.F., 3rd Functional deletion of the CCR5 receptor by intracellular immunization produces cells that are refractory to CCR5-dependent HIV-1 infection and cell fusion. Proc. Natl. Acad. Sci. USA. 2000;97:805–810. doi: 10.1073/pnas.97.2.805. PubMed DOI PMC
Petz L.D., Redei I., Bryson Y., Regan D., Kurtzberg J., Shpall E., Gutman J., Querol S., Clark P., Tonai R., et al. Hematopoietic cell transplantation with cord blood for cure of HIV infections. Biol. Blood Marrow Transplant. 2013;19:393–397. doi: 10.1016/j.bbmt.2012.10.017. PubMed DOI PMC
Hütter G., Nowak D., Mossner M., Ganepola S., Mussig A., Allers K., Schneider T., Hofmann J., Kucherer C., Blau O., et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N. Engl. J. Med. 2009;360:692–698. doi: 10.1056/NEJMoa0802905. PubMed DOI
Yukl S.A., Boritz E., Busch M., Bentsen C., Chun T.W., Douek D., Eisele E., Haase A., Ho Y.C., Hutter G., et al. Challenges in detecting HIV persistence during potentially curative interventions: A study of the Berlin patient. PLoS Pathog. 2013;9:e1003347. doi: 10.1371/journal.ppat.1003347. PubMed DOI PMC
Kordelas L., Verheyen J., Beelen D.W., Horn P.A., Heinold A., Kaiser R., Trenschel R., Schadendorf D., Dittmer U., Esser S. Shift of HIV tropism in stem-cell transplantation with CCR5 Delta32 mutation. N. Engl. J. Med. 2014;371:880–882. doi: 10.1056/NEJMc1405805. PubMed DOI
Hutter G., Zaia J.A. Allogeneic haematopoietic stem cell transplantation in patients with human immunodeficiency virus: The experiences of more than 25 years. Clin. Exp. Immunol. 2011;163:284–295. doi: 10.1111/j.1365-2249.2010.04312.x. PubMed DOI PMC
Flepisi B.T., Bouic P., Sissolak G., Rosenkranz B. Drug-drug interactions in HIV positive cancer patients. Biomed. Pharmacother. 2014;68:665–677. doi: 10.1016/j.biopha.2014.04.010. PubMed DOI
Fatkenheuer G., Nelson M., Lazzarin A., Konourina I., Hoepelman A.I., Lampiris H., Hirschel B., Tebas P., Raffi F., Trottier B., et al. Subgroup analyses of maraviroc in previously treated R5 HIV-1 infection. N. Engl. J. Med. 2008;359:1442–1455. doi: 10.1056/NEJMoa0803154. PubMed DOI
Westby M., Lewis M., Whitcomb J., Youle M., Pozniak A.L., James I.T., Jenkins T.M., Perros M., van der Ryst E. Emergence of CXCR4-using human immunodeficiency virus type 1 (HIV-1) variants in a minority of HIV-1-infected patients following treatment with the CCR5 antagonist maraviroc is from a pretreatment CXCR4-using virus reservoir. J. Virol. 2006;80:4909–4920. doi: 10.1128/JVI.80.10.4909-4920.2006. PubMed DOI PMC
Archer J., Braverman M.S., Taillon B.E., Desany B., James I., Harrigan P.R., Lewis M., Robertson D.L. Detection of low-frequency pretherapy chemokine (CXC motif) receptor 4 (CXCR4)-using HIV-1 with ultra-deep pyrosequencing. AIDS. 2009;23:1209–1218. doi: 10.1097/QAD.0b013e32832b4399. PubMed DOI PMC
Gray L., Churchill M.J., Keane N., Sterjovski J., Ellett A.M., Purcell D.F., Poumbourios P., Kol C., Wang B., Saksena N.K., et al. Genetic and functional analysis of R5X4 human immunodeficiency virus type 1 envelope glycoproteins derived from two individuals homozygous for the CCR5delta32 allele. J. Virol. 2006;80:3684–3691. doi: 10.1128/JVI.80.7.3684-3691.2006. PubMed DOI PMC
Henrich T.J., Hanhauser E., Hu Z., Stellbrink H.J., Noah C., Martin J.N., Deeks S.G., Kuritzkes D.R., Pereyra F. Viremic control and viral coreceptor usage in two HIV-1-infected persons homozygous for CCR5 Delta32. AIDS. 2015;29:867–876. doi: 10.1097/QAD.0000000000000629. PubMed DOI PMC
Davey R.T., Jr., Bhat N., Yoder C., Chun T.W., Metcalf J.A., Dewar R., Natarajan V., Lempicki R.A., Adelsberger J.W., Miller K.D., et al. HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression. Proc. Natl. Acad. Sci. USA. 1999;96:15109–15114. doi: 10.1073/pnas.96.26.15109. PubMed DOI PMC
Cortes F.H., Passaes C.P., Bello G., Teixeira S.L., Vorsatz C., Babic D., Sharkey M., Grinsztejn B., Veloso V., Stevenson M., et al. HIV controllers with different viral load cutoff levels have distinct virologic and immunologic profiles. J. Acquir. Immune Defic. Syndr. 2015;68:377–385. doi: 10.1097/QAI.0000000000000500. PubMed DOI PMC
Henrich T.J., Hu Z., Li J.Z., Sciaranghella G., Busch M.P., Keating S.M., Gallien S., Lin N.H., Giguel F.F., Lavoie L., et al. Long-term reduction in peripheral blood HIV type 1 reservoirs following reduced-intensity conditioning allogeneic stem cell transplantation. J. Infect. Dis. 2013;207:1694–1702. doi: 10.1093/infdis/jit086. PubMed DOI PMC
Henrich T.J., Hanhauser E., Marty F.M., Sirignano M.N., Keating S., Lee T.H., Robles Y.P., Davis B.T., Li J.Z., Heisey A., et al. Antiretroviral-free HIV-1 remission and viral rebound after allogeneic stem cell transplantation: Report of 2 cases. Ann. Intern. Med. 2014;161:319–327. doi: 10.7326/M14-1027. PubMed DOI PMC
Luzuriaga K., Gay H., Ziemniak C., Sanborn K.B., Somasundaran M., Rainwater-Lovett K., Mellors J.W., Rosenbloom D., Persaud D. Viremic relapse after HIV-1 remission in a perinatally infected child. N. Engl. J. Med. 2015;372:786–788. doi: 10.1056/NEJMc1413931. PubMed DOI PMC
Laird G.M., Eisele E.E., Rabi S.A., Lai J., Chioma S., Blankson J.N., Siliciano J.D., Siliciano R.F. Rapid quantification of the latent reservoir for HIV-1 using a viral outgrowth assay. PLoS Pathog. 2013;9:e1003398. doi: 10.1371/journal.ppat.1003398. PubMed DOI PMC
Zaia J.A., Forman S.J. Transplantation in HIV-infected subjects: Is cure possible? Hematology Am. Soc. Hematol. Educ. Program. 2013;2013:389–393. doi: 10.1182/asheducation-2013.1.389. PubMed DOI
Archin N.M., Margolis D.M. Emerging strategies to deplete the HIV reservoir. Curr. Opin. Infect. Dis. 2014;27:29–35. doi: 10.1097/QCO.0000000000000026. PubMed DOI PMC
Elliott J.H., Wightman F., Solomon A., Ghneim K., Ahlers J., Cameron M.J., Smith M.Z., Spelman T., McMahon J., Velayudham P., et al. Activation of HIV transcription with short-course vorinostat in HIV-infected patients on suppressive antiretroviral therapy. PLoS Pathog. 2014;10:e1004473. doi: 10.1371/journal.ppat.1004473. PubMed DOI PMC
Chirullo B., Sgarbanti R., Limongi D., Shytaj I.L., Alvarez D., Das B., Boe A., DaFonseca S., Chomont N., Liotta L., et al. A candidate anti-HIV reservoir compound, auranofin, exerts a selective 'anti-memory' effect by exploiting the baseline oxidative status of lymphocytes. Cell Death Dis. 2013;4:e944. doi: 10.1038/cddis.2013.473. PubMed DOI PMC
Sarkar I., Hauber I., Hauber J., Buchholz F. HIV-1 proviral DNA excision using an evolved recombinase. Science. 2007;316:1912–1915. doi: 10.1126/science.1141453. PubMed DOI
Hu W., Kaminski R., Yang F., Zhang Y., Cosentino L., Li F., Luo B., Alvarez-Carbonell D., Garcia-Mesa Y., Karn J., et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc. Natl. Acad. Sci. USA. 2014;111:11461–11466. doi: 10.1073/pnas.1405186111. PubMed DOI PMC
Hildinger M., Dittmar M.T., Schult-Dietrich P., Fehse B., Schnierle B.S., Thaler S., Stiegler G., Welker R., von Laer D. Membrane-anchored peptide inhibits human immunodeficiency virus entry. J. Virol. 2001;75:3038–3042. doi: 10.1128/JVI.75.6.3038-3042.2001. PubMed DOI PMC
Schambach A., Schiedlmeier B., Kuhlcke K., Verstegen M., Margison G.P., Li Z., Kamino K., Bohne J., Alexandrov A., Hermann F.G., et al. Towards hematopoietic stem cell-mediated protection against infection with human immunodeficiency virus. Gene Ther. 2006;13:1037–1047. doi: 10.1038/sj.gt.3302755. PubMed DOI
Younan P.M., Polacino P., Kowalski J.P., Peterson C.W., Maurice N.J., Williams N.P., Ho O., Trobridge G.D., von Laer D., Prlic M., et al. Positive selection of mC46-expressing CD4+ T cells and maintenance of virus specific immunity in a primate AIDS model. Blood. 2013;122:179–187. doi: 10.1182/blood-2013-01-482224. PubMed DOI PMC
Van Lunzen J., Glaunsinger T., Stahmer I., von Baehr V., Baum C., Schilz A., Kuehlcke K., Naundorf S., Martinius H., Hermann F., et al. Transfer of autologous gene-modified T cells in HIV-infected patients with advanced immunodeficiency and drug-resistant virus. Mol. Ther. 2007;15:1024–1033. doi: 10.1038/mt.sj.6300124. PubMed DOI
Ledger S., Howe A., Ong A., Boyd M., Millington M., Savkovic B., Murray J., Symonds G. Entry inhibitor gene modifieid T cells show selective survival advantage against HIV infection. Hum. Gene Ther. 2015 Submitted.
Li M.J., Kim J., Li S., Zaia J., Yee J.K., Anderson J., Akkina R., Rossi J.J. Long-term inhibition of HIV-1 infection in primary hematopoietic cells by lentiviral vector delivery of a triple combination of anti-HIV shRNA, anti-CCR5 ribozyme, and a nucleolar-localizing TAR decoy. Mol. Ther. 2005;12:900–909. doi: 10.1016/j.ymthe.2005.07.524. PubMed DOI
Anderson J., Li M.J., Palmer B., Remling L., Li S., Yam P., Yee J.K., Rossi J., Zaia J., Akkina R. Safety and efficacy of a lentiviral vector containing three anti-HIV genes—CCR5 ribozyme, tat-rev siRNA, and TAR decoy—in SCID-hu mouse-derived T cells. Mol. Ther. 2007;15:1182–1188. doi: 10.1038/sj.mt.6300157. PubMed DOI
Michienzi A., Li S., Zaia J.A., Rossi J.J. A nucleolar TAR decoy inhibitor of HIV-1 replication. Proc. Natl. Acad. Sci. USA. 2002;99:14047–14052. doi: 10.1073/pnas.212229599. PubMed DOI PMC
Herbert K.E., Demosthenous L., Wiesner G., Link E., Westerman D.A., Came N., Ritchie D.S., Harrison S., Seymour J.F., Prince H.M. Plerixafor plus pegfilgrastim is a safe, effective mobilization regimen for poor or adequate mobilizers of hematopoietic stem and progenitor cells: A phase I clinical trial. Bone Marrow Transplant. 2014;49:1056–1062. doi: 10.1038/bmt.2014.112. PubMed DOI
Hsu W.T., Jui H.Y., Huang Y.H., Su M.Y., Wu Y.W., Tseng W.Y., Hsu M.C., Chiang B.L., Wu K.K., Lee C.M. CXCR4 Antagonist TG-0054 Mobilizes Mesenchymal Stem Cells, Attenuates Inflammation, and Preserves Cardiac Systolic Function in a Porcine Model of Myocardial Infarction. Cell Transplant. 2015;24:1313–1328. doi: 10.3727/096368914X681739. PubMed DOI
Didigu C.A., Wilen C.B., Wang J., Duong J., Secreto A.J., Danet-Desnoyers G.A., Riley J.L., Gregory P.D., June C.H., Holmes M.C., et al. Simultaneous zinc-finger nuclease editing of the HIV coreceptors ccr5 and cxcr4 protects CD4+ T cells from HIV-1 infection. Blood. 2014;123:61–69. doi: 10.1182/blood-2013-08-521229. PubMed DOI PMC
Reynes J., Portales P., Segondy M., Baillat V., Andre P., Avinens O., Picot M.C., Clot J., Eliaou J.F., Corbeau P. CD4 T cell surface CCR5 density as a host factor in HIV-1 disease progression. AIDS. 2001;15:1627–1634. doi: 10.1097/00002030-200109070-00004. PubMed DOI
Lin Y.L., Mettling C., Portales P., Reynes J., Clot J., Corbeau P. Cell surface CCR5 density determines the postentry efficiency of R5 HIV-1 infection. Proc. Natl. Acad. Sci. USA. 2002;99:15590–15595. doi: 10.1073/pnas.242134499. PubMed DOI PMC
Mahic M., Yaqub S., Johansson C.C., Tasken K., Aandahl E.M. FOXP3+CD4+CD25+ adaptive regulatory T cells express cyclooxygenase-2 and suppress effector T cells by a prostaglandin E2-dependent mechanism. J. Immunol. 2006;177:246–254. doi: 10.4049/jimmunol.177.1.246. PubMed DOI
Cutler C., Multani P., Robbins D., Kim H.T., Le T., Hoggatt J., Pelus L.M., Desponts C., Chen Y.B., Rezner B., et al. Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation. Blood. 2013;122:3074–3081. doi: 10.1182/blood-2013-05-503177. PubMed DOI PMC
Current views on HIV-1 latency, persistence, and cure