Historical Biogeography Using Species Geographical Ranges
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
KL2 TR000140
NCATS NIH HHS - United States
UL1 TR000142
NCATS NIH HHS - United States
PubMed
26254671
PubMed Central
PMC4838013
DOI
10.1093/sysbio/syv057
PII: syv057
Knihovny.cz E-zdroje
- Klíčová slova
- Bayesian inference, continuous trait evolution, diversification, historical biogeography, phylogeography, species distributions,
- MeSH
- fylogeneze MeSH
- fylogeografie metody MeSH
- ptáci klasifikace MeSH
- rozšíření zvířat * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geografické názvy
- Jižní Amerika MeSH
Spatial variation in biodiversity is the result of complex interactions between evolutionary history and ecological factors. Methods in historical biogeography combine phylogenetic information with current species locations to infer the evolutionary history of a clade through space and time. A major limitation of most methods for historical biogeographic inference is the requirement of single locations for terminal lineages, reducing contemporary species geographical ranges to a point in two-dimensional space. In reality, geographic ranges usually show complex geographic patterns, irregular shapes, or discontinuities. In this article, we describe a method for phylogeographic analysis using polygonal species geographic ranges of arbitrary complexity. By integrating the geographic diversification process across species ranges, we provide a method to infer the geographic location of ancestors in a Bayesian framework. By modeling migration conditioned on a phylogenetic tree, this approach permits reconstructing the geographic location of ancestors through time. We apply this new method to the diversification of two neotropical bird genera, Trumpeters (Psophia) and Cinclodes ovenbirds. We demonstrate the usefulness of our method (called rase) in phylogeographic reconstruction of species ancestral locations and contrast our results with previous methods that compel researchers to reduce the distribution of species to one point in space. We discuss model extensions to enable a more general, spatially explicit framework for historical biogeographic analysis.
Zobrazit více v PubMed
Abramowitz M., Stegun I.A. 1964. Handbook of mathematical functions: with formulas, graphs, and mathematical tables. New York: Dover Publications , Inc.
Andow D.A., Kareiva P.M., Levin S.A., Okubo A. 1990. Spread of invading organisms. Landsc. Ecol. 4:177–188.
Avise J.C., Arnold J., Ball R.M., Bermingham E., Lamb T., Neigel J.E., Reeb C.A., Saunders N.C. 1987. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu. Rev. Ecol. Syst. 18:489–522.
Ballard J.W.O., Whitlock M.C. 2004. The incomplete natural history of mitochondria. Mol. Ecol. 13:729–744. PubMed
Bartoszek K., Pienaar J., Mostad P., Andersson S., Hansen T.F. 2012. A phylogenetic comparative method for studying multivariate adaptation. J. Theor. Biol. 314:204–215. PubMed
Beaumont M.A., Nielsen R., Robert C., Hey J., Gaggiotti O., Knowles L., Estoup A., Panchal M., Corander J., Hickerson M., Sisson S.A., Fagundes N., Chikhi L., Beerli P., Vitalis R., Cornuet J.-M., Huelsenbeck J., Foll M., Yang Z., Rousset F., Balding D., Excoffier L. 2010. In defence of model-based inference in phylogeography. Mol. Ecol. 19:436–446. PubMed PMC
Bielejec F., Rambaut A., Suchard M.A., Lemey P. 2011. SPREAD: spatial phylogenetic reconstruction of evolutionary dynamics. Bioinformatics. 27:2910–2912. PubMed PMC
Blackburn D.C., Measey G.J. 2009. Dispersal to or from an African biodiversity hotspot? Mol. Ecol. 18:1904–1915. PubMed
Bloomquist E.W., Lemey P., Suchard M.A. 2010. Three roads diverged? Routes to phylogeographic inference. Trends Ecol. Evol. 25:626–632. PubMed PMC
Bouckaert R. 2015. Phylogeography by diffusion on a sphere. bioRxiv.:016311. PubMed PMC
Bouckaert R., Lemey P., Dunn M., Greenhill S.J., Alekseyenko A.V., Drummond A.J., Gray R.D., Suchard M.A., Atkinson Q.D. 2012. Mapping the origins and expansion of the Indo-European language family. Science 337:957–960. PubMed PMC
Butler M.A., King A.A. 2004. Phylogenetic comparative analysis: a modeling approach for adaptive evolution. Am. Nat. 164:683–695. PubMed
Camargo A., Werneck F.P., Morando M., Sites J.W., Avila L.J. 2013. Quaternary range and demographic expansion of Liolaemus darwinii (Squamata: Liolaemidae) in the Monte Desert of Central Argentina using Bayesian phylogeography and ecological niche modelling. Mol. Ecol. 22:4038–4054. PubMed
Campbell K.E., Jr., Frailey C.D., Romero-Pittman L. 2006. The Pan-Amazonian Ucayali Peneplain, late Neogene sedimentation in Amazonia, and the birth of the modern Amazon River system. Palaeogeogr. Palaeoclimatol. Palaeoecol. 239:166–219.
Chapman F.M. 1917. The Distribution of Bird-life in Colombia: A Contribution to a Biological Survey of South America. Bull. Am. Mus. Nat. Hist. 36:1–729.
Chesser R.T. 2004. Systematics, evolution, and biogeography of the South American ovenbird genus Cinclodes. The Auk. 121:752–766.
Coyne J.A., Orr H.A. 2004. Speciation. Sunderland, MA: Sinauer Associates.
Cracraft J.Otte D., Endler D. J. A. 1989. Speciation and its ontology: the empirical consequences of alternative species concepts for understanding patterns and processes of differentiation. Speciation and its Consequences. Sunderland, MA: Sinauer; p. 28–59.
Csilléry K., Blum M.G.B., Gaggiotti O.E., François O. 2010. Approximate Bayesian Computation (ABC) in practice. Trends Ecol. Evol. 25:410–418. PubMed
Derryberry E.P., Claramunt S., Derryberry G., Chesser R.T., Cracraft J., Aleixo A., Perez-Eman J., Remsen J.V., Brumfield R.T. 2011. Lineage diversification and morphological evolution in a large-scale continental radiation: the Neotropical ovenbirds and woodcreepers (Aves: Furnariidae). Evolution. 65:2973–2986. PubMed
Donoghue M.J. 2008. A phylogenetic perspective on the distribution of plant diversity. Proc. Natl. Acad. Sci. 105:11549–11555. PubMed PMC
Drummond A.J., Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7:214. PubMed PMC
Escobar García P., Winkler M., Flatscher R., Sonnleitner M., Krejčíková J., Suda J., Hülber K., Schneeweiss G.M., Schönswetter P. 2012. Extensive range persistence in peripheral and interior refugia characterizes Pleistocene range dynamics in a widespread Alpine plant species (Senecio carniolicus, Asteraceae). Mol. Ecol. 21:1255–1270. PubMed PMC
ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute.
Felsenstein J. 1985. Phylogenies and the comparative method. Am. Nat. 125:1–15.
Figueiredo J., Hoorn C., Ven P. van der, Soares E. 2009. Late Miocene onset of the Amazon River and the Amazon deep-sea fan: Evidence from the Foz do Amazonas Basin. Geology 37:619–622.
Fjeldså J. 1992. Biogeographic patterns and evolution of the avifauna of relict high-attitude woodlands of the Andes. Steenstrupia:9–62.
Garamszegi L.Z. 2014. Modern phylogenetic comparative methods and their application in Evolutionary Biology: concepts and practice. New York: Springer.
Garland T., Harvey P.H., Ives A.R. 1992. Procedures for the analysis of Comparative Data using phylogenetically independent contrasts. Syst. Biol. 41:18–32.
Goldberg E.E., Lancaster L.T., Ree R.H. 2011. Phylogenetic inference of reciprocal effects between geographic range evolution and diversification. Syst. Biol. 60:451–465. PubMed
Graham C.H., Ron S.R., Santos J.C., Schneider C.J., Moritz C. 2004. Integrating phylogenetics and environmental niche models to explore speciation mechanisms in Dendrobatid frogs. Evolution 58:1781–1793. PubMed
Harmon L.J., Weir J.T., Brock C.D., Glor R.E., Challenger W. 2008. GEIGER: investigating evolutionary radiations. Bioinformatics 24:129–131. PubMed
Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G., Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25:1965–1978.
Hoorn C., Wesselingh F.P., Steege H. ter, Bermudez M.A., Mora A., Sevink J., Sanmartín I., Sanchez-Meseguer A., Anderson C.L., Figueiredo J.P., Jaramillo C., Riff D., Negri F.R., Hooghiemstra H., Lundberg J., Stadler T., Särkinen T., Antonelli A. 2010. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330:927–931. PubMed
Hurlbert A.H., Jetz W. 2007. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl. Acad. Sci. 104:13384–13389. PubMed PMC
Hutter C.R., Guayasamin J.M., Wiens J.J. 2013. Explaining Andean megadiversity: the evolutionary and ecological causes of glassfrog elevational richness patterns. Ecol. Lett. 16:1135–1144. PubMed
IUCN. 2014. IUCN Red List of Threatened Species. Version 2014.3. Available from: URL http://www.iucnredlist.org last accessed 20 August, 2015.
Jablonski D., Roy K., Valentine J.W. 2006. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314:102–106. PubMed
Jetz W., Rahbek C. 2002. Geographic range size and determinants of avian species richness. Science 297:1548–1551. PubMed
Jetz W., Thomas G.H., Joy J.B., Hartmann K., Mooers A.O. 2012. The global diversity of birds in space and time. Nature 491:444–448. PubMed
Kennedy J.D., Wang Z., Weir J.T., Rahbek C., Fjeldså J., Price T.D. 2014. Into and out of the tropics: the generation of the latitudinal gradient among New World passerine birds. J. Biogeogr. 41:1746–1757.
Kozak K.H., Wiens J.J. 2007. Climatic zonation drives latitudinal variation in speciation mechanisms. Proc. R. Soc. B Biol. Sci. 274:2995–3003. PubMed PMC
Kozak K.H., Wiens J.J. 2010. Niche conservatism drives elevational diversity patterns in Appalachian salamanders. Am. Nat. 176:40–54. PubMed
Landis M.J., Matzke N.J., Moore B.R., Huelsenbeck J.P. 2013. Bayesian analysis of biogeography when the number of areas is large. Syst. Biol. 62:789–804. PubMed PMC
Latrubesse E.M., Cozzuol M., da Silva-Caminha S.A.F., Rigsby C.A., Absy M.L., Jaramillo C. 2010. The Late Miocene paleogeography of the Amazon Basin and the evolution of the Amazon River system. Earth Sci. Rev. 99:99–124.
Lemey P., Rambaut A., Welch J.J., Suchard M.A. 2010. Phylogeography takes a relaxed random walk in continuous space and time. Mol. Biol. Evol. 27:1877–1885. PubMed PMC
Lemmon A.R., Lemmon E.M. 2008. A likelihood framework for estimating phylogeographic history on a continuous landscape. Syst. Biol. 57:544–561. PubMed
Lynch Alfaro J.W., Boubli J.P., Olson L.E., Di Fiore A., Wilson B., Gutiérrez-Espeleta G.A., Chiou K.L., Schulte M., Neitzel S., Ross V., Schwochow D., Nguyen M.T.T., Farias I., Janson C.H., Alfaro M.E. 2012. Explosive Pleistocene range expansion leads to widespread Amazonian sympatry between robust and gracile capuchin monkeys. J. Biogeogr. 39:272–288.
Marin J.-M., Pudlo P., Robert C.P., Ryder R.J. 2011. Approximate Bayesian computational methods. Stat. Comput. 22:1167–1180.
Martins E.P., Hansen T.F. 1997. Phylogenies and the Comparative Method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am. Nat. 149:646–667.
Matzke N.J. 2014. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Syst. Biol. 63:951–970. PubMed
Meyer S., Held L. 2014. Power-law models for infectious disease spread. Ann. Appl. Stat. 8:1612–1639.
Morlon H. 2014. Phylogenetic approaches for studying diversification. Ecol. Lett. 17:508–525. PubMed
Murta R.D.P. with contributions from D.M. and B.R.G. library by A. 2013. gpclib: General Polygon Clipping Library for R.
Nee S. 2006. Birth-Death models in macroevolution. Annu. Rev. Ecol. Evol. Syst. 37:1–17.
Nee S., May R.M., Harvey P.H. 1994. The reconstructed evolutionary process. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 344:305–311. PubMed
Neigel J.E., Ball R.M., Jr., Avise J.C. 1991. Estimation of single generation migration distances from geographic variation in animal mitochondrial DNA. Evolution 45:423–432. PubMed
Nylinder S., Lemey P., Bruyn M.D., Suchard M.A., Pfeil B.E., Walsh N., Anderberg A.A. 2014. On the biogeography of Centipeda: a species-tree diffusion approach. Syst. Biol. 63:178–191. PubMed PMC
Paradis E., Claude J., Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290. PubMed
Quintero I., Wiens J.J. 2013a. What determines the climatic niche width of species? The role of spatial and temporal climatic variation in three vertebrate clades. Glob. Ecol. Biogeogr. 22:422–432.
Quintero I., Wiens J.J. 2013b. Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. Ecol. Lett. 16:1095–1103. PubMed
Rabosky D.L. 2009. Ecological limits and diversification rate: alternative paradigms to explain the variation in species richness among clades and regions. Ecol. Lett. 12:735–743. PubMed
Rebernig C.A., Schneeweiss G.M., Bardy K.E., Schönswetter P., Villaseñor J.L., Obermayer R., Stuessy T.F., Weiss-Schneeweiss H. 2010. Multiple Pleistocene refugia and Holocene range expansion of an abundant southwestern American desert plant species (Melampodium leucanthum, Asteraceae). Mol. Ecol. 19:3421–3443. PubMed
Ree R.H., Moore B.R., Webb C.O., Donoghue M.J. 2005. A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution 59:2299–2311. PubMed
Ree R.H., Smith S.A. 2008. Maximum Likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst. Biol. 57:4–14. PubMed
Revell L., Harmon L.J., Collar D. 2008. Phylogenetic signal, evolutionary process, and rate. Syst. Biol. 57:591–601. PubMed
Revell L.J. 2010. Phylogenetic signal and linear regression on species data. Methods Ecol. Evol. 1:319–329.
Revell L.J. 2013. phytools: Phylogenetic Tools for comparative biology (and other things). .
Ribas C.C., Aleixo A., Nogueira A.C.R., Miyaki C.Y., Cracraft J. 2012. A palaeobiogeographic model for biotic diversification within Amazonia over the past three million years. Proc. R. Soc. B Biol. Sci. 279:681–689. PubMed PMC
Ricklefs R.E. 2007. Estimating diversification rates from phylogenetic information. Trends Ecol. Evol. 22:601–610. PubMed
Ronquist F., Sanmartín I. 2011. Phylogenetic methods in Biogeography. Annu. Rev. Ecol. Evol. Syst. 42:441–464.
Rubinoff D., Holland B.S. 2005. Between Two Extremes: Mitochondrial DNA is neither the panacea nor the nemesis of phylogenetic and taxonomic inference. Syst. Biol. 54:952–961. PubMed
Ruggiero A., Hawkins B.A. 2008. Why do mountains support so many species of birds? Ecography 31:306–315.
Sacek V. 2014. Drainage reversal of the Amazon River due to the coupling of surface and lithospheric processes. Earth Planet. Sci. Lett. 401:301–312.
Sanín C., Cadena C.D., Maley J.M., Lijtmaer D.A., Tubaro P.L., Chesser R.T. 2009. Paraphyly of Cinclodes fuscus (Aves: Passeriformes: Furnariidae): Implications for taxonomy and biogeography. Mol. Phylogenet. Evol. 53:547–555. PubMed
Schluter D., Price T., Mooers A.Ø., Ludwig D. 1997. Likelihood of ancestor states in adaptive radiation. Evolution 51:1699–1711. PubMed
Silver L.T., Schultz P.H. 1982. Geological implications of impacts of large asteroids and comets on the Earth. Geological Society of America.
Smith B.T., McCormack J.E., Cuervo A.M., Hickerson M.J., Aleixo A., Cadena C.D., Perez-Eman J., Burney C.W., Xie X., Harvey M.G., Faircloth B.C., Glenn T.C., Derryberry E.P., Prejean J., Fields S., Brumfield R.T. 2014. The drivers of tropical speciation. Nature 515:406–409. PubMed
Storch D., Keil P., Jetz W. 2013. Universal species-area and endemics-area relationships at continental scales. Nature 488:78–81. PubMed
Surget-Groba Y., Thorpe R.S. 2013. A likelihood framework analysis of an island radiation: phylogeography of the Lesser Antillean gecko Sphaerodactylus vincenti, in comparison with the anole Anolis roquet. J. Biogeogr. 40:105–116.
Vieites D.R., Nieto-Roman S., Wake D.B. 2009. Reconstruction of the climate envelopes of salamanders and their evolution through time. Proc. Natl. Acad. Sci. 106:19715–19722. PubMed PMC
Wiens J.J., Donoghue M.J. 2004. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 19:639–644. PubMed
Yesson C., Culham A. 2006. Phyloclimatic modeling: Combining phylogenetics and bioclimatic modeling. Syst. Biol. 55:785–802. PubMed