Spatio-temporal changes in endogenous abscisic acid contents during etiolated growth and photomorphogenesis in tomato seedlings
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26322576
PubMed Central
PMC4623003
DOI
10.1080/15592324.2015.1039213
Knihovny.cz E-zdroje
- Klíčová slova
- abscisic acid, blue-light, etiolated growth, photomorphogenesis, tomato,
- MeSH
- etiolizace * MeSH
- hypokotyl růst a vývoj MeSH
- kotyledon růst a vývoj MeSH
- kyselina abscisová metabolismus MeSH
- semenáček růst a vývoj metabolismus MeSH
- Solanum lycopersicum růst a vývoj metabolismus MeSH
- světlo * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyselina abscisová MeSH
The role of abscisic acid (ABA) during early development was investigated in tomato seedlings. The endogenous content of ABA in particular organs was analyzed in seedlings grown in the dark and under blue light. Our results showed that in dark-grown seedlings, the ABA accumulation was maximal in the cotyledons and elongation zone of hypocotyl, whereas under blue-light, the ABA content was distinctly reduced. Our data are consistent with the conclusion that ABA promotes the growth of etiolated seedlings and the results suggest that ABA plays an inhibitory role in de-etiolation and photomorphogenesis in tomato.
Zobrazit více v PubMed
Arsovski AA, Galstyan A, Guseman JM, Nemhauser JL. Photomorphogenesis. Arabidopsis Book 2012; 10:e0147; PMID:22582028; http://dx.doi.org/10.1199/tab.0147 PubMed DOI PMC
Casal JJ. Phytochromes, cryptochromes, phototropin: photoreceptor interactions in plants. Photochem Photobiol 2000; 71:1-11; PMID:10649883; http://dx.doi.org/10.1562/0031-8655(2000)071%3c0001:PCPPII%3e2.0.CO;2 PubMed DOI
Parks BM, Cho MH, Spalding EP. Two genetically separable phases of growth inhibition induced by blue light in Arabidopsis seedlings. Plant Physiol 1998; 118: 609-15; PMID:9765547; http://dx.doi.org/10.1104/pp.118.2.609 PubMed DOI PMC
Parks BM, Spalding EP. Sequential and coordinated action of phytochromes A and B during Arabidopsis stem growth revealed by kinetic analysis. Proc Natl Acad Sci USA 1999; 96: 14142-6; PMID:10570212; http://dx.doi.org/10.1073/pnas.96.24.14142 PubMed DOI PMC
Humplík JF, Bergougnoux V, Jandová M, Šimura J, Pěnčík A, Tomanec O, Rolčík J, Novák O, Fellner M. Endogenous abscisic acid promotes hypocotyl growth and affects endoreduplication during dark-induced growth in tomato (Solanum lycopersicum L.). PloS One 2015; 10:e0117793; http://dx.doi.org/10.1371/journal.pone.0117793 PubMed DOI PMC
Fellner M, Zhang R, Pharis RP, Sawhney VK. Reduced de‐etiolation of hypocotyl growth in a tomato mutant is associated with hypersensitivity to, and high endogenous levels of, abscisic acid. J Exp Bot 2001; 52:725-38; PMID:11413209 PubMed
Chen H, Zhang J, Neff MM, Hong S-W, Zhang H, Deng XW, Xiong L. Integration of light and abscisic acid signaling during seed germination and early seedling development. Proc Natl Acad Sci USA 2008; 105:4495-500; PMID:18332440; http://dx.doi.org/10.1073/pnas.0710778105 PubMed DOI PMC
Bergougnoux V, Zalabák D, Jandová M, Novák O, Wiese-Klinkenberg A, Fellner M. Effect of blue light on endogenous isopentenyladenine and endoreduplication during photomorphogenesis and de-etiolation of tomato (Solanum lycopersicum L.) seedlings. PLoS One 2012; 7:e45255; http://dx.doi.org/10.1371/journal.pone.0045255 PubMed DOI PMC
Turečková V, Novák O, Strnad M. Profiling ABA metabolites in Nicotiana tabacum L. leaves by ultra-performance liquid chromatography–electrospray tandem mass spectrometry. Talanta 2009; 80:390-9; http://dx.doi.org/10.1016/j.talanta.2009.06.027 PubMed DOI
Rohde A, De Rycke R, Beeckman T, Engler G, Van Montagu M, Boerjan W. ABI3 affects plastid differentiation in dark-grown Arabidopsis seedling. Plant Cell 2000; 12: 35-52; PMID:10634906; http://dx.doi.org/10.1105/tpc.12.1.35 PubMed DOI PMC
Tanaka Y, Nose T, Jikumaru Y, Kamiya Y. 2013. ABA inhibits entry into stomatal-lineage development in Arabidopsis leaves. Plant J 2013; 74: 448-57; PMID:23373882; http://dx.doi.org/10.1111/tpj.12136 PubMed DOI
Kraepiel Y, Rousselin P, Sotta B, Kerhoas L, Einhorn J, Caboche M, Miginiac E. Analysis of phytochrome- and ABA-deficient mutants suggests that ABA degradation is controlled by light in Nicotiana plumbaginifolia. 1994; 6:665-72
Weatherwax SC, Ong MS, Degenhardt J, Bray EA, Tobin EM. The interaction of light and abscisic acid in the regulation of plant gene expression. Plant Physiol 1996; 111:363-70; PMID:8787022; http://dx.doi.org/10.1104/pp.111.2.363 PubMed DOI PMC
Sawada Y, Aoki M, Nakaminami K, Mitsuhashi W, Tatematsu K, Kushiro T, Koshiba T, Kamiya Y, Inoue Y, Nambara E, et al.. Phytochrome- and gibberellin-mediated regulation of abscisic acid metabolism during germination of photoblastic lettuce seeds. Plant Physiol 2008; 146:1386-96; PMID:18184730; http://dx.doi.org/10.1104/pp.107.115162 PubMed DOI PMC
Gubler F, Hughes T, Waterhouse P, Jacobsen J. Regulation of dormancy in barley by blue light and after-ripening: effects on abscisic acid and gibberellin metabolism. Plant Physiol 2008; 147:886-96; PMID:18408047; http://dx.doi.org/10.1104/pp.107.115469 PubMed DOI PMC
Bethke PC, Gubler F, Jacobsen JV, Jones RL. Dormancy of Arabidopsis seeds and barley grains can be broken by nitric oxide. Planta 2004; 219:847-55; PMID:15133666; http://dx.doi.org/10.1007/s00425-004-1282-x PubMed DOI