Endogenous abscisic acid promotes hypocotyl growth and affects endoreduplication during dark-induced growth in tomato (Solanum lycopersicum L.)
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25695830
PubMed Central
PMC4334974
DOI
10.1371/journal.pone.0117793
PII: PONE-D-14-33496
Knihovny.cz E-zdroje
- MeSH
- cyklin-dependentní kinasy antagonisté a inhibitory MeSH
- cytokininy biosyntéza metabolismus MeSH
- endoreduplikace účinky záření MeSH
- homeostáza účinky záření MeSH
- hypokotyl cytologie růst a vývoj metabolismus účinky záření MeSH
- inhibitory proteinkinas farmakologie MeSH
- klíčení účinky léků účinky záření MeSH
- kyselina abscisová metabolismus MeSH
- Solanum lycopersicum cytologie růst a vývoj metabolismus účinky záření MeSH
- tma * MeSH
- vývoj rostlin účinky léků účinky záření MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cyklin-dependentní kinasy MeSH
- cytokininy MeSH
- inhibitory proteinkinas MeSH
- kyselina abscisová MeSH
Dark-induced growth (skotomorphogenesis) is primarily characterized by rapid elongation of the hypocotyl. We have studied the role of abscisic acid (ABA) during the development of young tomato (Solanum lycopersicum L.) seedlings. We observed that ABA deficiency caused a reduction in hypocotyl growth at the level of cell elongation and that the growth in ABA-deficient plants could be improved by treatment with exogenous ABA, through which the plants show a concentration dependent response. In addition, ABA accumulated in dark-grown tomato seedlings that grew rapidly, whereas seedlings grown under blue light exhibited low growth rates and accumulated less ABA. We demonstrated that ABA promotes DNA endoreduplication by enhancing the expression of the genes encoding inhibitors of cyclin-dependent kinases SlKRP1 and SlKRP3 and by reducing cytokinin levels. These data were supported by the expression analysis of the genes which encode enzymes involved in ABA and CK metabolism. Our results show that ABA is essential for the process of hypocotyl elongation and that appropriate control of the endogenous level of ABA is required in order to drive the growth of etiolated seedlings.
Zobrazit více v PubMed
Hansen H, Grossmann K (2000) Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiol 124: 1437–1448. PubMed PMC
Davies PJ (2010) The plant hormones: their nature, occurrence, and functions In: Davies PJ, editor. Plant hormones: biosynthesis, signal transduction, action! Dordrecht, The Netherlands: Springer. 9–11 p.
Rai MK, Shekhawat NS, Gupta AK, Phulwaria M, Ram K, et al. (2011) The role of abscisic acid in plant tissue culture: a review of recent progress. Plant Cell Tiss Org 106: 179–190.
Zhang J, Davies WJ (1990) Does ABA in the xylem control the rate of leaf growth in soil-dried maize and sunflower plants? J Exp Bot 41: 1125–1132.
Creelman RA, Mason HS, Bensen RJ, Boyer JS, Mullet JE (1990) Water deficit and abscisic acid cause differential inhibition of shoot versus root growth in soybean seedlings: Analysis of growth, sugar accumulation, and gene expression. Plant Physiol 92: 205–214. PubMed PMC
Munns R, Cramer GR (1996) Is coordination of leaf and root growth mediated by abscisic acid? Opinion. Plant Soil 185: 33–49.
Wakabayashi K, Sakurai N, Kuraishi S (1989) Role of the outer tissue in abscisic acid‐mediated growth suppression of etiolated squash hypocotyl segments. Physiol Plantarum 75: 151–156.
Hayashi Y, Takahashi K, Inoue S-I, Kinoshita T (2014) Abscisic acid suppresses hypocotyl elongation by dephosphorylating plasma membrane H(+)-ATPase in Arabidopsis thaliana. Plant Cell Physiol 55: 845–853. 10.1093/pcp/pcu028 PubMed DOI
Quarrie SA (1987) Use of genotypes differing in endogenous abscisic acid levels in studies of physiology and development In: Hoad GV, Lenton J R, Jackson MB, Atkin RK, editors. Hormone action in plant development—a critical appraisal. London: Butterworths; pp. 89–105. 10.1111/tpj.12742 DOI
Takahashi K (1972) Abscisic acid as a stimulator for rice mesocotyl growth. Nat New Biol 238: 92–93.
Saab IN, Sharp RE, Pritchard J, Voetberg GS (1990) Increased endogenous abscisic acid maintains primary root growth and inhibits shoot growth of maize seedlings at low water potentials. Plant Physiol 93: 1329–1336. PubMed PMC
Sharp RE, LeNoble ME, Else MA, Thorne ET, Gherardi F (2000) Endogenous ABA maintains shoot growth in tomato independently of effects on plant water balance: evidence for an interaction with ethylene. J Exp Bot 51: 1575–1584. PubMed
LeNoble ME, Spollen WG, Sharp RE (2004) Maintenance of shoot growth by endogenous ABA: genetic assessment of the involvement of ethylene suppression. J Exp Bot 55: 237–245. PubMed
Barrero JM, Piqueras P, González-Guzmán M, Serrano R, Rodríguez PL, et al. (2005) A mutational analysis of the ABA1 gene of Arabidopsis thaliana highlights the involvement of ABA in vegetative development. J Exp Bot 56: 2071–2083. PubMed
Arsovski AA, Galstyan A, Guseman JM, Nemhauser JL (2012) Photomorphogenesis. In The Arabidopsis Book. e0147. 10.1199/tab.0147 PubMed DOI PMC
Barrero JM, Rodríguez PL, Quesada V, Alabadí D, Blázquez MA, et al. (2008) The ABA1 gene and carotenoid biosynthesis are required for late skotomorphogenic growth in Arabidopsis thaliana . Plant Cell Environ 31: 227–234. PubMed
Taylor IB, Linforth RST, Al-Naieb RJ, Bowman WR, Marples BA (1988) The wilty tomato mutants flacca and sitiens are impaired in the oxidation of ABA-aldehyde to ABA. Plant Cell Environ 11: 739–745.
Tal M, Nevo Y (1973) Abnormal stomatal behavior and root resistance, and hormonal imbalance in three wilty mutants of tomato. Biochem Genet 3: 291–300. PubMed
Neill SJ, Horgan R (1985) Abscisic acid production and water relations in wilty tomato mutants subjected to water deficiency. J Exp Bot 36: 1222–1231.
Burbidge A, Grieve TM, Jackson A, Thompson A, McCarty DR, et al. (1999) Characterization of the ABA‐deficient tomato mutant notabilis and its relationship with maize Vp14. Plant J 17: 427–431. PubMed
Thompson AJ, Thorne ET, Burbidge A, Jackson AC, Sharp RE, et al. (2004) Complementation of notabilis, an abscisic acid-deficient mutant of tomato: Importance of sequence context and utility of partial complementation. Plant Cell Environ 27: 459–471.
Murashige T, Skoog A (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15: 473–497.
Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9: 671–675. PubMed PMC
Pěnčík A, Rolčík J, Novák O, Magnus V, Barták P, et al. (2009) Isolation of novel indole-3-acetic acid conjugates by immunoaffinity extraction. Talanta 80: 651–655. 10.1016/j.talanta.2009.07.043 PubMed DOI
Hoyerová K, Gaudinová A, Malbeck J, Dobrev PI, Kocábek T, et al. (2006) Efficiency of different methods of extraction and purification of cytokinins. Phytochem 67: 1151–1159. PubMed
Dobrev PI, Kamínek M (2002) Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solidphase extraction. J Chromatogr A 950: 21–29. PubMed
Svačinová J, Novák O, Plačková L, Lenobel R, Holík J, et al. (2012) A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction. Plant Methods 8: 17 10.1186/1746-4811-8-17 PubMed DOI PMC
Dekkers BJ, Willems L, Bassel GW, van Bolderen-Veldkamp RP, Ligterink W, et al. (2012) Identification of reference genes for RT-qPCR expression analysis in Arabidopsis and tomato seeds. Plant Cell Physiol 53: 28–37. 10.1093/pcp/pcr113 PubMed DOI
Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2: 2233–2244. PubMed
Parks BM, Cho MH, Spalding EP (1998) Two genetically separable phases of growth inhibition induced by blue light in Arabidopsis seedlings. Plant Physiol 118: 609–615. PubMed PMC
Parks BM, Spalding EP (1999) Sequential and coordinated action of phytochromes A and B during Arabidopsis stem growth revealed by kinetic analysis. P Natl Acad Sci USA 96: 14142–14146. PubMed PMC
Kitahata N, Asami T (2011) Chemical biology of abscisic acid. J Plant Res 124: 549–557. 10.1007/s10265-011-0415-0 PubMed DOI
Nitsch LM, Oplaat C, Feron R, Ma Q, Wolter-Arts M, et al. (2009) Abscisic acid levels in tomato ovaries are regulated by LeNCED1 and SlCYP707A1 . Planta 299: 1335–1346. PubMed
Traas J, Hülskamp M, Gendreau E, Höfte H (1998) Endoreduplication and development: rule without dividing? Curr Opin Plant Biol 1: 498–503. PubMed
Bergougnoux V, Zalabák D, Jandová M, Novák O, Wiese-Klinkenberg A, et al. (2012) Effect of blue light on endogenous isopentenyladenine and endoreduplication during photomorphogenesis and de-etiolation of tomato (Solanum lycopersicum L.) seedlings. PLoS One. 7, e45255 10.1371/journal.pone.0045255 PubMed DOI PMC
Wang H, Qi Q, Schorr P, Cutler AJ, Crosby WL, et al. (1998) ICK1, a cyclin-dependent protein kinase inhibitor from Arabidopsis thaliana interacts with both Cdc2a and CycD3, and its expression is induced by abscisic acid. Plant J 15: 501–510. PubMed
Bisbis B, Delmas F, Joubés J, Sicard A, Hernould M, et al. (2006) Cyclin-dependent kinase (CDK) inhibitors regulate the CDK-cyclin complex activities in endoreduplicating cells of developing tomato fruit. J Biol Chem 281: 7374–7383. PubMed
Nafati M, Fragne N, Hernould M, Chevalier C, Gévaudant F (2010) Functional characterization of the tomato cyclin-dependent kinase inhibitor SlKRP1 domains involved in protein-protein interactions. New Phytol 188: 136–149. 10.1111/j.1469-8137.2010.03364.x PubMed DOI
Chen H, Zhang J, Neff MM, Hong S-W, Zhang H, et al. (2008) Integration of light and abscisic acid signaling during seed germination and early seedling development. P Natl Acad Sci USA 105: 4495–4500 10.1073/pnas.0710778105 PubMed DOI PMC
Mäkelä P, Munns R, Colmer TD, Peltonen‐Sainio P (2003) Growth of tomato and an ABA‐deficient mutant (sitiens) under saline conditions. Physiol Plantarum: 117: 58–63.
Aroca R, Del Mar Alguacil M, Vernieri P, Ruiz-Lozano JM (2008) Plant responses to drought stress and exogenous ABA application are modulated differently by mycorrhization in tomato and an ABA-deficient mutant (sitiens). Microb Ecol 56: 704–719. 10.1007/s00248-008-9390-y PubMed DOI
Sharp RE (2002) Interaction with ethylene: changing views on the role of abscisic acid in root and shoot growth responses to water stress. Plant Cell Environ 25: 211–222. PubMed
Taiz L, Zeiger E (2006) Plant Physiology, fourth edition Sunderland, Massachusetts: Sinauer Associates, Inc., Publishers; Pp. 485–486. 10.1016/j.ijsu.2006.06.025 DOI
Dolezal K, Popa I, Krystof V, Spíchal L, Fojtíková M, et al. (2006) Preparation and biological activity of 6-benzylaminopurine derivatives in plants and human cancer cells. Bioorg Med Chem 14: 875–884. PubMed
Jones HG, Sharp CS, Higgs KH (1987). Growth and water relations of wilty mutants of tomato (Lycopersicon esculentum Mill.). J Exp Bot 38: 1848–1856.
Sindhu RK, Walton DC (1988) Xanthoxin metabolism in cell-free preparations from wild type and wilty mutants of tomato. Plant Physiol 88: 178–182. PubMed PMC
Groot SP, Yperen II, Karssen CM (1991) Strongly reduced levels of endogenous abscisic acid in developing seeds of tomato mutant sitiens do not influence in vivo accumulation of dry matter and storage proteins. Physiol Plantarum 81: 73–78.
Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol 49: 199–222. PubMed
Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61: 651–679. 10.1146/annurev-arplant-042809-112122 PubMed DOI
Rushton DL, Tripathi P, Rabara RC, Lin J, Ringler P, et al. (2012) WRKY transcription factors: key components in abscisic acid signalling. Plant Biotechnol J 10: 2–11. 10.1111/j.1467-7652.2011.00634.x PubMed DOI
Finkelstein R (2013) Abscisic acid synthesis and response. Arabidopsis Book 11: e0166 10.1199/tab.0166 PubMed DOI PMC
Brocard-Gifford I, Lynch TJ, Garcia ME, Malhotra B, Finkelstein RR (2004) The Arabidopsis thaliana ABSCISIC ACID-INSENSITIVE8 locus encodes a novel protein mediating abscisic acid and sugar responses essential for growth. Plant Cell 16: 406–421. PubMed PMC
Gonzalez-Guzman M, Pizzio GA, Antoni R, Vera-Sirera F, Merilo E, et al. (2012) Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid. Plant Cell 24: 2483–2496. 10.1105/tpc.112.098574 PubMed DOI PMC
Kraepiel Y, Rousselin P, Sotta B, Kerhoas L, Einhorn J, et al. (1994) Analysis of phytochrome- and ABA-deficient mutants suggests that ABA degradation is controlled by light in Nicotiana plumbaginifolia. Plant J 6: 665–672.
Weatherwax SC, Ong MS, Degenhardt J, Bray EA, Tobin EM (1996) The interaction of light in the regulation of plant gene expression. Plant Physiol 111: 363–370. PubMed PMC
Symons GM, Reid JB (2003) Hormone levels and response during de-etiolation in pea. Planta 216: 422–431. PubMed
Nagel OW, Konings H, Lambers H (1994) Growth rate, plant development and water relations of the ABA deficient tomato mutant sitiens . Physiol Plantarum 92: 102–108.
Perrot-Rechenmann C (2010) Cellular responses to auxin: division versus expansion. Cold Spring Harb Perspect Biol. 2: a001446 10.1101/cshperspect.a001446 PubMed DOI PMC
Wen B, Nieuwland J, Murray JAH (2013) The Arabidopsis CDK inhibitor ICK3/KRP5 is rate limiting for primary root growth and promotes growth through cell elongation and endoreduplication. J Exp Bot 64: 1–13. 10.1093/jxb/ers358 PubMed DOI PMC
del Castellano M, Boniotti MB, Caro E, Schnittiger A, Gutierrez C (2004) DNA replication licensing affects cell proliferation or endoreplication in a cell type-specific manner. Plant Cell 16: 2380–2393. PubMed PMC
Pettko-Szandtner A, Meszaros T, Horvath GV, Bako L, Csordas-Toth E, et al. (2006) Activation of an alfalfa cyclin-dependent kinase inhibitor by calmodulin-like domain protein kinase. Plant J 46: 111–123. PubMed
Alabadí D, Gallego-Bartolomé J, García-Cárcel L, Orlando L, Rubio V, et al. (2008) Gibberellins modulate light signalling pathways to prevent Arabidopsis seedling de-etiolation in darkness. Plant J 53: 324–335. PubMed
Yamburenko MV, Zubo YO, Vankova R, Kusnetsov VV, Kulaeva ON, et al. (2013) Abscisic acid represses the transcription of chloroplast genes. J Exp Bot 64: 4491–4502. 10.1093/jxb/ert258 PubMed DOI PMC
Guan C, Wang X, Feng J, Hong S, Liang Y, et al. (2014) Cytokinin antagonizes abscisic acid-mediated inhibition of cotyledon greening of promoting the degradation of ABSCISIC ACID INSENSITIVE5 protein in Arabidopsis. Plant Physiol 164: 1515–1526. 10.1104/pp.113.234740 PubMed DOI PMC
Valente P, Tao W, Verbelen JP (1998). Auxins and cytokinins control DNA endoreduplication and deduplication in single cells of tobacco. Plant Sci 134: 207–215.
Scofield S, Dewitte W, Nieuwland J, Murray JA (2013) The Arabidopsis homeobox gene SHOOT MERISTEMLESS has cellular and meristem‐organisational roles with differential requirements for cytokinin and CYCD3 activity. Plant J 75: 53–66. 10.1111/tpj.12198 PubMed DOI
Takahashi N, Kajihara T, Okamura C, Kim Y, Katagiri Y, et al. (2013) Cytokinins Control Endocycle Onset by Promoting the Expression of an APC/C Activator in Arabidopsis Roots. Curr Biol 23: 1812–1817. 10.1016/j.cub.2013.07.051 PubMed DOI
Brugiere N, Jiao S, Hantke S, Zinselmeier C, Roessler JA, et al. (2003) Cytokinin oxidase gene expression in maize is localized to the vasculature, and is induced by cytokinins, abscisic acid, and abiotic stress. Plant Physiol 132: 1228–1240. PubMed PMC
Rivero RM, Gimeno J, Van Deynze A, Harkamal W, Blumwald E (2010) Enhanced cytokinin synthesis in tobacco plants expressing PSARK:: IPT prevents the degradation of photosynthetic protein complexes during drought. Plant Cell Physiol 51: 1929–1941. 10.1093/pcp/pcq143 PubMed DOI
Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56: 165–185.oamdg. PubMed