Mitochondrial Dysfunction and Disturbed Coherence: Gate to Cancer
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
26437417
PubMed Central
PMC4695805
DOI
10.3390/ph8040675
PII: ph8040675
Knihovny.cz E-resources
- Keywords
- LDH virus, cancer biophysics, disturbed coherence, microtubule oscillations, mitochondrial dysfunction, water ordering,
- Publication type
- Journal Article MeSH
- Review MeSH
Continuous energy supply, a necessary condition for life, excites a state far from thermodynamic equilibrium, in particular coherent electric polar vibrations depending on water ordering in the cell. Disturbances in oxidative metabolism and coherence are a central issue in cancer development. Oxidative metabolism may be impaired by decreased pyruvate transfer to the mitochondrial matrix, either by parasitic consumption and/or mitochondrial dysfunction. This can in turn lead to disturbance in water molecules' ordering, diminished power, and coherence of the electromagnetic field. In tumors with the Warburg (reverse Warburg) effect, mitochondrial dysfunction affects cancer cells (fibroblasts associated with cancer cells), and the electromagnetic field generated by microtubules in cancer cells has low power (high power due to transport of energy-rich metabolites from fibroblasts), disturbed coherence, and a shifted frequency spectrum according to changed power. Therapeutic strategies restoring mitochondrial function may trigger apoptosis in treated cells; yet, before this step is performed, induction (inhibition) of pyruvate dehydrogenase kinases (phosphatases) may restore the cancer state. In tumor tissues with the reverse Warburg effect, Caveolin-1 levels should be restored and the transport of energy-rich metabolites interrupted to cancer cells. In both cancer phenotypes, achieving permanently reversed mitochondrial dysfunction with metabolic-modulating drugs may be an effective, specific anti-cancer strategy.
Clinical Biophysics International Research Group via Maggio 21 Lugano 6900 Switzerland
Institute of Physics Czech Academy of Sciences Na Slovance 2 182 21 Prague 8 Czech Republic
See more in PubMed
Fröhlich H. Bose condensation of strongly excited longitudinal electric modes. Phys. Lett. A. 1968;26:402–403. doi: 10.1016/0375-9601(68)90242-9. DOI
Fröhlich H. Long-range coherence and energy storage in biological systems. Int. J. Quantum Chem. 1968;2:641–649. doi: 10.1002/qua.560020505. DOI
Fröhlich H. Quantum mechanical concepts in biology. In: Marois M., editor. Theoretical Physics and Biology, Proceedings of the 1st International Conference on Theoretical Physics and Biology; Versailles, France. 26–30 June 1967; Amsterdam, the Netherlands: North Holland; 1969. pp. 13–22.
Fröhlich H. Collective behaviour of non-linearly coupled oscillating fields (with applications to biological systems) J. Collect. Phenom. 1973;1:101–109.
Fröhlich H. The biological effects of microwaves and related questions. Adv. Electron. Electron Phys. 1980;53:85–152.
Fröhlich H. Coherent electric vibrations in biological systems and cancer problem. IEEE Trans. MTT. 1978;26:613–617. doi: 10.1109/TMTT.1978.1129446. DOI
Warburg O., Posener K., Negelein E. Über den Stoffwechsel der Carcinomzelle. Biochem. Z. 1924;152:309–344. doi: 10.1007/BF01726151. DOI
Warburg O. On the Origin of Cancer Cells. Science. 1956;123:309–314. doi: 10.1126/science.123.3191.309. PubMed DOI
Fried S.D., Bagchi S., Boxer S.G. Extreme electric fields power catalysis in the active site of ketosteroid isomerase. Science. 2014;346:1510–1514. doi: 10.1126/science.1259802. PubMed DOI PMC
Hildebrandt P. More than fine tuning. Science. 2014;346:1456–1457. doi: 10.1126/science.aaa2878. PubMed DOI
Arani R., Bono I., Del Giudice E., Preparata G. QED Coherence and the Thermodynamics of Water. Int. J. Mod. Phys. B. 1995;5:1813–1841. doi: 10.1142/S0217979295000744. DOI
Del Giudice E., Tedeschi A. Water and Autocatalysis in Living Matter. Electromagn. Biol. Med. 2009;28:46–52. doi: 10.1080/15368370802708728. PubMed DOI
Del Giudice E., Elia V., Tedeschi A. The Role of Water in the Living Organisms. Neural Netw. World. 2009;19:355–360.
Zheng J., Pollack G.H. Long-range forces extending from polymer-gel surfaces. Phys. Rev. E. 2003;68:031408. doi: 10.1103/PhysRevE.68.031408. PubMed DOI
Amos L.A. Structure of Microtubules. In: Roberts K., Hyams J.S., editors. Microtubules. Academic Press; London, UK; New York, NY, USA: 1979. pp. 1–64.
Stebbings H., Hunt C. The nature of the clear zone around microtubules. Cell Tissue Res. 1982;227:609–617. doi: 10.1007/BF00204791. PubMed DOI
Zheng J., Chin W., Khijniak E., Khijniak E., Jr., Pollack G.H. Surfaces and interfacial water: Evidence that hydrophilic surfaces have long–range impact. Adv. Colloid Interface Sci. 2006;127:19–27. doi: 10.1016/j.cis.2006.07.002. PubMed DOI
Pollack G., Cameron I., Wheatley D. Water and the Cell. Springer; Dodrecht, The Netherlands: 2006.
Chai B., Yoo H., Pollack G. Effect of radiant energy on near–surface water. J. Phys. Chem. B. 2009;113:13953–13958. doi: 10.1021/jp908163w. PubMed DOI PMC
Fuchs E.C., Woisetschläger J., Gatterer K., Maier E., Pecnik R., Holler G., Eisenkolbl H. The floating water bridge. J. Phys. D Appl. Phys. 2007;40:6112–6114. doi: 10.1088/0022-3727/40/19/052. DOI
Fuchs E.C., Gatterer K., Holler G., Woisetschläger J. Dynamics of the floating water bridge. J. Phys. D Appl. Phys. 2008;41:185502. doi: 10.1088/0022-3727/41/18/185502. DOI
Fuchs E.C., Bitschnau B., Woisetschläger J., Maier E., Beuneu B., Teixeira J. Neutron scattering of a floating heavy water bridge. J. Phys. D Appl. Phys. 2009;42:065502. doi: 10.1088/0022-3727/42/6/065502. DOI
Giuliani L., D’Emilia E., Lisi A., Grimaldi S., Foletti A., Del Giudice E. The Floating Water Bridge under Strong Electric Potential. Neural Netw. World. 2009;19:393–398.
Tyner K.M., Kopelman R., Philbert M.A. “Nanosized voltmeter” enables cellular-wide mapping. Biophys. J. 2007;93:1163–1174. doi: 10.1529/biophysj.106.092452. PubMed DOI PMC
Pokorný J. Physical Aspects of biological activity and cancer. AIP Adv. 2012;2:0112071. doi: 10.1063/1.3699057. DOI
Alberts B., Bray D., Lewis J., Raff M., Roberts K., Watson J.D. Molecular Biology of the Cell. 3rd ed. Garland Publishing, Inc.; New York, NY, USA; London, UK: 1994.
Kolobova E., Tuganova A., Boulatnikov I., Popov K.M. Regulation of pyruvate dehydrogenase activity through phosphorylation at multiple sites. Biochem. J. 2001;358:69–77. doi: 10.1042/bj3580069. PubMed DOI PMC
Amos L.A., Klug A.J. Arrangement of Subunits in Flagellar Microtubules. Cell Sci. 1974;14:523–549. PubMed
Satarić M., Tuszyński J.A., Žakula R.B. Kinklike Excitations as an Energy Transfer Mechanism in Microtubules. Phys. Rev. E. 1993;48:589–597. doi: 10.1103/PhysRevE.48.589. PubMed DOI
Tuszyński J.A., Hameroff S., Satarić M., Trpisová B., Nip M.L.A. Ferroelectric Behavior in Microtubule Dipole Lattices: Implications for Information Processing, Signaling and Assembly/Disassembly. J. Theor. Biol. 1995;174:371–380. doi: 10.1006/jtbi.1995.0105. DOI
Pokorný J., Jelínek F., Trkal V., Lamprecht I., Hölzel R. Vibrations in Microtubules. J. Biol. Phys. 1997;23:171–179. doi: 10.1023/A:1005092601078. PubMed DOI PMC
Pokorný J. Excitation of vibration in microtubules in living cell. Bioelectrochemistry. 2004;63:321–326. doi: 10.1016/j.bioelechem.2003.09.028. PubMed DOI
Pelling A.E., Sehati S., Gralla E.B., Valentine J.S., Gimzewski J.K. Local nano-mechanical motion of the cell wall of Saccharomyces cerevisiae. Science. 2004;305:1147–1150. doi: 10.1126/science.1097640. PubMed DOI
Pokorný J., Hašek J., Vaniš J., Jelínek F. Biophysical aspects of cancer—Electromagnetic mechanism. Indian J. Exp. Biol. 2008;46:310–321. PubMed
Pokorný J. Biophysical Cancer Transformation Pathway. Electromagn. Biol. Med. 2009;28:105–123. doi: 10.1080/15368370802711615. PubMed DOI
Pelling A.E., Sehati S., Gralla E.B., Gimzewski J.K. Time dependence of the frequency and amplitude of the local nanomechanical motion of yeast. Nanomed. Nanotechnol. Biol. Med. 2005;1:178–183. doi: 10.1016/j.nano.2005.04.002. PubMed DOI
Jelínek F., Cifra M., Pokorný J., Vaniš J., Šimša J., Hašek J., Frýdlová I. Measurement of Electrical Oscillations and Mechanical Vibrations of Yeast Cells Membrane around 1 kHz. Electromagn. Biol. Med. 2009;28:223–232. doi: 10.1080/15368370802710807. PubMed DOI
Kasas S., Ruggeri F.S., Benadiba C., Maillard C., Stupar P., Tournu H., Dietler G., Longo G. Detecting nanoscale vibrations as signature of life. Proc. Natl. Acad. Sci. USA. 2015;112:378–381. doi: 10.1073/pnas.1415348112. PubMed DOI PMC
Pohl H.A., Braden T., Robinson S., Piclardi J., Pohl D.G. Life cycle alterations of the micro-dielectrophoretic effects of cells. J. Biol. Phys. 1981;9:133–154. doi: 10.1007/BF01988247. DOI
Pokorný J., Hašek J., Jelínek F., Šaroch J., Palán B. Electromagnetic Activity of Yeast Cells in the M Phase. Electro Magnetobiol. 2001;20:371–396. doi: 10.1081/JBC-100108577. DOI
Havelka D., Kučera O., Deriu M.A., Cifra M. Electro-Acoustic Behavior of the Mitotic Spindle: A Semi-Classical Coarse-Grained Model. PLoS ONE. 2014;9:e86501. doi: 10.1371/journal.pone.0086501. PubMed DOI PMC
Sahu S., Ghosh S., Ghosh B., Aswani K., Hirata K., Fujita D., Bandyopadhyay A. Atomic water channel controlling remarkable properties of a single brain microtubule: Correlating single protein to its supramolecular assembly. Biosens. Bioelectron. 2013;47:141–148. doi: 10.1016/j.bios.2013.02.050. PubMed DOI
Sahu S., Ghosh S., Fujita D., Bandyopadhyay A. Live visualizations of single isolated tubulin protein self-assembly via tunneling current: Effect of electromagnetic pumping during spon-taneous growth of microtubule. Sci. Rep. 2014;4:7303. doi: 10.1038/srep07303. PubMed DOI PMC
Alexandrov L.B., Nik–Zainal S., Wedge D.C., Aparicio S.A.J.R., Behjati S., Biankin A.V., Bignell G.R., Bolli N., Borg A., Børresen-Dale A.-L., et al. Signature of mutational processes in human cancers. Nature. 2013;500:415–421. doi: 10.1038/nature12477. PubMed DOI PMC
Davies H., Bignell G.R., Cox Ch., Stephens P., Edkins S., Clegg S., Teague J., Woffendin H., Garnett M.J., Bottomley W., et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–954. doi: 10.1038/nature00766. PubMed DOI
Dhomen N., Reis-Filho J.S., da Rocha Dias S., Hayward R., Savage K., Delmas V., Larue L., Pritchard C., Marais R. Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell. 2009;15:294–303. doi: 10.1016/j.ccr.2009.02.022. PubMed DOI
Dankort D., Curley D.P., Cartlidge R.A., Nelson B., Karnezis A.N., Damsky W.E., Jr., You M.J., DePinho R.A., McMahon M., Bosenberg M. BrafV600E cooperates with Pten loss to induce metastatic melanoma. Nat. Genet. 2009;41:544–552. PubMed PMC
Tsai J., Lee J.T., Wang W., Zhang J., Cho H., Mamo S., Bremer R., Gillette S., Kong J., Haass N.K., Sproesser K., Li L., Smalley K.S.M., Fong D., et al. Discovery of a selective áinhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc. Natl. Acad. Sci. USA. 2008;105:3041–3046. doi: 10.1073/pnas.0711741105. PubMed DOI PMC
Vredeveld L.C.W., Possik P.A., Smit M.A., Meissl K., Michaloglou Ch., Horlings H.M., Ajouaou A., Kortman P.C., Dankort D., McMahon M., et al. Abrogation of BRAFV600E-induced senescence by PI3K pathway activation contributes to melanomagenesis. Genes Dev. 2012;26:1055–1069. doi: 10.1101/gad.187252.112. PubMed DOI PMC
Jandová A., Hurych J., Pokorný J., Čoček A., Trojan S., Nedbalová M., Dohnalová A. Effects of Sinusoidal Magnetic Field on Adherence Inhibition of Leukocytes. Electro Magnetobiol. 2001;20:397–413. doi: 10.1081/JBC-100108578. PubMed DOI
Jandová A., Pokorný J., Kobilková J., Janoušek M., Mašata J., Trojan S., Beková A., Slavík V., Čoćek A., Sanitrák J. Cell-mediated immunity in cervical cancer evolution. Electromagn. Biol. Med. 2009;28:1–14. doi: 10.1080/15368370802708868. PubMed DOI
Brinton M.A. Lactate Dehydrogenase-Elevating, Equine Arteritis and Lelystad Viruses. Academic Press Ltd.; London, UK; San Diego, CA, USA: 1994. pp. 763–771. Encyclopedia of Virology 2.
Plagemann P.G.W. Lactate dehydrogenase-elevating virus and related viruses. In: Fields B.N., Knipe D.M., Howley P.M., editors. Virology. 3rd ed. Raven Press; New York, NY, USA: 1996. pp. 1105–1120.
Kaplon J., Zheng L., Meissl K., Chaneton B., Selivanov V.A., Mackay G., van der Burg S.H., Verdegaal E.M.E., Cascante M., Shlomi T., et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene–induced senescence. Nature. 2013;498:109–112. doi: 10.1038/nature12154. PubMed DOI
Pokorný J., Vedruccio C., Cifra M., Kučera O. Cancer physics: Diagnostics based on damped cellular elastoelectrical vibrations in microtubules. Eur. Biophys. J. 2011;40:747–759. doi: 10.1007/s00249-011-0688-1. PubMed DOI
Pokorný J., Foletti A., Kobilková J., Jandová A., Vrba J., Vrba J., Jr., Nedbalová M., Čoćek A., Danani A., Tuszyński J.A. Biophysical Insights into Cancer Transformation and Treatment. Sci. World J. 2013 doi: 10.1155/2013/195028. PubMed DOI PMC
Beil M., Micoulet A., von Wichert G., Paschke S., Walther P., Omary M.B., Van Veldhoven P.P., Gern U., Wolff-Hieber E., Eggermann J., et al. Sphingosylphosphorylcholine regulates keratin network architecture and visco–elastic properties of human cancer cells. Nat. Cell Biol. 2003;5:803–811. doi: 10.1038/ncb1037. PubMed DOI
Pavlides S., Whitaker-Menezes D., Castello-Cros R., Flomenberg N., Witkiewicz A.K., Frank P.G., Casimiro M.C., Wang C., Fortina P., Addya S., et al. Reverse Warburg effect. Aerobic glycolysis and cancer associated fibroblasts and their tumor stroma. Cell Cycle. 2009;8:3984–4001. doi: 10.4161/cc.8.23.10238. PubMed DOI
Pokorný J., Pokorný J., Kobilková J., Jandová A., Vrba J., Vrba J., Jr. Targeting Mitochondria for Cancer Treatment—Two Types of Mitochondrial Dysfunction. Prague Med. Rep. 2014;115:104–119. doi: 10.14712/23362936.2014.41. PubMed DOI
Pokorný J., Pokorný J., Kobilková J. Postulates on electromagnetic activity in biological systems and cancer. Integr. Biol. 2013;5:1439–1446. doi: 10.1039/c3ib40166a. PubMed DOI
Pokorný J., Pokorný J., Kobilková J., Jandová A., Vrba J., Vrba J., Jr. Cancer—Pathological breakdown of coherent energy states. Biophys. Rev. Lett. 2014;9:115–133. doi: 10.1142/S1793048013300077. DOI
Pokorný J., Cifra M., Jandová A., Kučera O., Šrobár F., Vrba J., Vrba J., Jr., Kobilková J. Targeting mitochondria for cancer treatment. Eur. J. Oncol. 2012;17:23–36.
Pokorný J., Jandová A., Nedbalová M., Jelínek F., Cifra M., Kučera O., Havelka D., Vrba J., Vrba J., Jr., Čoček A., Kobilková J. Mitochondrial metabolism—Neglected link of cancer transformation and treatment. Prague Med. Rep. 2012;113:81–94. PubMed
Pokorný J., Pokorný J. Biophysical Pathology in Cancer Transformation. J. Clin. Exp. Oncol. 2013 doi: 10.4172/2324-9110.S1-003. DOI
Vedruccio C., Meessen A. EM cancer detection by means of non linear resonance interaction; Proceedings of the PIERS Progress in Electromagnetics Research Symposium; Pisa, Italy. 28–31 March 2004; pp. 909–912.
Traill R.R. Asbestos as “toxic short-circuit” optic-fibre for UV within the cell-net: —Likely roles and hazards for secret UV and IR metabolism; Proceedings of the 9th International Fröhlich’s Symposium, Electrodynamic Activity of Living Cells; Prague, Czech Republic. 1–3 July 2011; p. 012017.
Toyokuni S. Mechanism of Asbestos-Induced Carcinogenesis. Nagoya J. Med. Sci. 2009;71:1–10. doi: 10.1265/jjh.66.562. PubMed DOI PMC
Pavlides S., Tsirigos A., Migneco G., Whitaker-Menezes D., Chiavarina B., Flomenberg N., Frank P.G., Casimiro M.C., Wang C., Pestell R.G., et al. The autophagic tumor stroma model of cancer. Role of oxidative stress and ketone production in fuelling tumor cell metabolism. Cell Cycle. 2010;9:3485–3505. doi: 10.4161/cc.9.17.12721. PubMed DOI PMC
Bonuccelli G., Whitaker-Menezes D., Castello-Cros R., Pavlides S., Pestell R.G., Fatatis A., Witkiewicz A.K., Vander Heiden M.G., Migneco G., Chiavarina B., et al. The reverse Warburg effect. Glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle. 2010;9:1960–1971. doi: 10.4161/cc.9.10.11601. PubMed DOI
Chiavarina B., Whitaker–Menezes D., Migneco G., Martinez-Outschoorn U.E., Pavlides S., Howell A., Tanowitz H.B., Casimiro M.C., Wang C., Pestell R.G., et al. HIF1-alpha functions as a tumor promoter in cancer associated fibroblasts, and as a tumor suppressor in breast cancer cells. Autophagy drives compartment-specific oncogenesis. Cell Cycle. 2010;9:3534–3551. doi: 10.4161/cc.9.17.12908. PubMed DOI PMC
Ko Y.H., Lin Z., Flomenberg N., Pestell R.G., Howell A., Sotgia F., Lisanti M.P., Martinez-Outschoorn U.E. Glutamine fuels a vicious cycle of autophagy in the tumor stroma and oxidative mitochondrial metabolism in epithelial cancer cells. Implications for preventing chemotherapy resistance. Cancer Biol. Ther. 2011;12:1085–1097. doi: 10.4161/cbt.12.12.18671. PubMed DOI PMC
Martinez-Outschoorn U.E., Trimmer C., Lin Z., Whitaker-Menezes D., Chiavarina B., Zhou J., Wang C., Pavlides S., Martinez-Cantarin M.P., Cappozza F., et al. Autophagy in cancer associated fibroblasts promotes tumor cell survival. Role of hypoxia, HIF1 induction and NFκB activation in the tumor stromal microenvironment. Cell Cycle. 2010;9:3515–3533. doi: 10.4161/cc.9.17.12928. PubMed DOI PMC
Martinez–Outschoorn U.E., Lin Z., Ko Y.H., Goldberg A.F., Flomenberg N., Wang C., Pavlides S., Pestell R.G., Howell A., Sotgia F., Lisanti M.P. Understanding the metabolic basis of drug resistance. Therapeutic induction of the Warburg effect kills cancer cells. Cell Cycle. 2011;10:2521–2528. doi: 10.4161/cc.10.15.16584. PubMed DOI PMC
Bonuccelli G., Tsirigos A., Whitaker-Menezes D., Pavlides S., Pestell R.G., Chiavarina B., Frank P/G., Flomenberg N., Howell A., Martinez-Outschoorn U.E., et al. Ketones and lactate “fuel” tumor growth and metastasis. Evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle. 2010;9:3506–3514. doi: 10.4161/cc.9.17.12731. PubMed DOI PMC
Migneco G., Whitaker–Menezes D., Chiavarina B., Castello-Cros R.C., Pavlides S., Pestell R.G., Fatatis A., Flomenberg N., Tsirigos A., Howell A., et al. Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis. Evidence for stromal-epithelial metabolic coupling. Cell Cycle. 2010;9:2412–2422. doi: 10.4161/cc.9.12.11989. PubMed DOI
Mejsnarová B., Jandová A., Kupec M., Motyčka K., Heyberger K., Čoupek J., Kobilková J. Increased frequency of associations of acrocentric chromosomes brought about by the LDH virus in fertile women. Sborník Lékařský. 1981;83:332–335. (In Czech) PubMed
Jandová A., Pokorný J., Pokorný J., Kobilková J., Nedbalová M., Čoček A., Jelínek F., Vrba J., Vrba J., Jr., Dohnalová A., et al. Diseases caused by defects of energy level and loss of coherence in living cells. Electromagn. Biol. Med. 2015;34:151–155. doi: 10.3109/15368378.2015.1036076. PubMed DOI
Penrose R. Shadows of the Mind. Oxford Press; London, UK: 1994.
Hagan S., Hameroff S., Tuszyński J. Quantum computation in brain microtubules: Decoherence and biological feasibility. Phys. Rev. E. 2002;65:061901. doi: 10.1103/PhysRevE.65.061901. PubMed DOI
Hameroff S., Penrose R. Consciousness in the universe: A review of the “Orch OR” theory. Phys. Life Rev. 2014;11:39–78. doi: 10.1016/j.plrev.2013.08.002. PubMed DOI
Tomasetti C., Vogelstein B. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science. 2015;347:78–81. doi: 10.1126/science.1260825. PubMed DOI PMC
Ralph S.J., Pritchard R., Rodríguez-Enríquez S., Moreno-Sánchez R., Ralph R.K. Hitting the Bull’s-Eye in Metastatic Cancers—NSAIDs Elevate ROS in Mitochondria, Inducing Malignant Cell Death. Pharmaceuticals. 2015;8:62–106. doi: 10.3390/ph8010062. PubMed DOI PMC
Fan J., Kamphorst J.J., Mathew R., Chung M.K., White E., Shlomi T., Rabinowitz J.D. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol. Syst. Biol. 2013;9 doi: 10.1038/msb.2013.65. PubMed DOI PMC
Mitsuishi Y., Taguchi K., Kawatani Y., Shibata T., Nukiwa T., Aburatani H., Yamamoto M., Motohashi H. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell. 2012;22:66–79. doi: 10.1016/j.ccr.2012.05.016. PubMed DOI
Michalak K.P., Maćkowska-Kędziora A., Sobolewski B., Woźniak P. Key Roles of Glutamine Pathways in Reprogramming the Cancer Metabolism. Hindawi Oxidative Med. Cell. Longev. 2015;2015:964321. PubMed PMC
Bonnet S., Archer S.L., Allalunis-Turner J., Haromy A., Beaulieu C., Thompson R., Lee C.T., Lopaschuk G.D., Puttagunta L., Bonnet S., et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 2007;11:37–51. doi: 10.1016/j.ccr.2006.10.020. PubMed DOI
Tennant A.D., Durán R.V., Gottlieb E. Targeting metabolic transformation for cancer therapy. Nat. Rev. 2010;10:267–277. doi: 10.1038/nrc2817. PubMed DOI
Preto J., Pettini M., Tuszynski J.A. Possible role of electrodynamic interactions in long-distance biomolecular recognition. Phys. Rev. E. 2015;91:052710. doi: 10.1103/PhysRevE.91.052710. PubMed DOI
Jandová A., Pokorný J., Čoček A., Trojan S., Nedbalová M., Dohnalová A. Effects of Sinusoidal 0.5 mT Magnetic Field on Leukocyte Adherence Inhibition. Electromagn. Biol. Med. 2004;23:81–96. doi: 10.1081/LEBM-200032766. DOI