• This record comes from PubMed

Mitochondrial Dysfunction and Disturbed Coherence: Gate to Cancer

. 2015 Sep 30 ; 8 (4) : 675-95. [epub] 20150930

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Continuous energy supply, a necessary condition for life, excites a state far from thermodynamic equilibrium, in particular coherent electric polar vibrations depending on water ordering in the cell. Disturbances in oxidative metabolism and coherence are a central issue in cancer development. Oxidative metabolism may be impaired by decreased pyruvate transfer to the mitochondrial matrix, either by parasitic consumption and/or mitochondrial dysfunction. This can in turn lead to disturbance in water molecules' ordering, diminished power, and coherence of the electromagnetic field. In tumors with the Warburg (reverse Warburg) effect, mitochondrial dysfunction affects cancer cells (fibroblasts associated with cancer cells), and the electromagnetic field generated by microtubules in cancer cells has low power (high power due to transport of energy-rich metabolites from fibroblasts), disturbed coherence, and a shifted frequency spectrum according to changed power. Therapeutic strategies restoring mitochondrial function may trigger apoptosis in treated cells; yet, before this step is performed, induction (inhibition) of pyruvate dehydrogenase kinases (phosphatases) may restore the cancer state. In tumor tissues with the reverse Warburg effect, Caveolin-1 levels should be restored and the transport of energy-rich metabolites interrupted to cancer cells. In both cancer phenotypes, achieving permanently reversed mitochondrial dysfunction with metabolic-modulating drugs may be an effective, specific anti-cancer strategy.

See more in PubMed

Fröhlich H. Bose condensation of strongly excited longitudinal electric modes. Phys. Lett. A. 1968;26:402–403. doi: 10.1016/0375-9601(68)90242-9. DOI

Fröhlich H. Long-range coherence and energy storage in biological systems. Int. J. Quantum Chem. 1968;2:641–649. doi: 10.1002/qua.560020505. DOI

Fröhlich H. Quantum mechanical concepts in biology. In: Marois M., editor. Theoretical Physics and Biology, Proceedings of the 1st International Conference on Theoretical Physics and Biology; Versailles, France. 26–30 June 1967; Amsterdam, the Netherlands: North Holland; 1969. pp. 13–22.

Fröhlich H. Collective behaviour of non-linearly coupled oscillating fields (with applications to biological systems) J. Collect. Phenom. 1973;1:101–109.

Fröhlich H. The biological effects of microwaves and related questions. Adv. Electron. Electron Phys. 1980;53:85–152.

Fröhlich H. Coherent electric vibrations in biological systems and cancer problem. IEEE Trans. MTT. 1978;26:613–617. doi: 10.1109/TMTT.1978.1129446. DOI

Warburg O., Posener K., Negelein E. Über den Stoffwechsel der Carcinomzelle. Biochem. Z. 1924;152:309–344. doi: 10.1007/BF01726151. DOI

Warburg O. On the Origin of Cancer Cells. Science. 1956;123:309–314. doi: 10.1126/science.123.3191.309. PubMed DOI

Fried S.D., Bagchi S., Boxer S.G. Extreme electric fields power catalysis in the active site of ketosteroid isomerase. Science. 2014;346:1510–1514. doi: 10.1126/science.1259802. PubMed DOI PMC

Hildebrandt P. More than fine tuning. Science. 2014;346:1456–1457. doi: 10.1126/science.aaa2878. PubMed DOI

Arani R., Bono I., Del Giudice E., Preparata G. QED Coherence and the Thermodynamics of Water. Int. J. Mod. Phys. B. 1995;5:1813–1841. doi: 10.1142/S0217979295000744. DOI

Del Giudice E., Tedeschi A. Water and Autocatalysis in Living Matter. Electromagn. Biol. Med. 2009;28:46–52. doi: 10.1080/15368370802708728. PubMed DOI

Del Giudice E., Elia V., Tedeschi A. The Role of Water in the Living Organisms. Neural Netw. World. 2009;19:355–360.

Zheng J., Pollack G.H. Long-range forces extending from polymer-gel surfaces. Phys. Rev. E. 2003;68:031408. doi: 10.1103/PhysRevE.68.031408. PubMed DOI

Amos L.A. Structure of Microtubules. In: Roberts K., Hyams J.S., editors. Microtubules. Academic Press; London, UK; New York, NY, USA: 1979. pp. 1–64.

Stebbings H., Hunt C. The nature of the clear zone around microtubules. Cell Tissue Res. 1982;227:609–617. doi: 10.1007/BF00204791. PubMed DOI

Zheng J., Chin W., Khijniak E., Khijniak E., Jr., Pollack G.H. Surfaces and interfacial water: Evidence that hydrophilic surfaces have long–range impact. Adv. Colloid Interface Sci. 2006;127:19–27. doi: 10.1016/j.cis.2006.07.002. PubMed DOI

Pollack G., Cameron I., Wheatley D. Water and the Cell. Springer; Dodrecht, The Netherlands: 2006.

Chai B., Yoo H., Pollack G. Effect of radiant energy on near–surface water. J. Phys. Chem. B. 2009;113:13953–13958. doi: 10.1021/jp908163w. PubMed DOI PMC

Fuchs E.C., Woisetschläger J., Gatterer K., Maier E., Pecnik R., Holler G., Eisenkolbl H. The floating water bridge. J. Phys. D Appl. Phys. 2007;40:6112–6114. doi: 10.1088/0022-3727/40/19/052. DOI

Fuchs E.C., Gatterer K., Holler G., Woisetschläger J. Dynamics of the floating water bridge. J. Phys. D Appl. Phys. 2008;41:185502. doi: 10.1088/0022-3727/41/18/185502. DOI

Fuchs E.C., Bitschnau B., Woisetschläger J., Maier E., Beuneu B., Teixeira J. Neutron scattering of a floating heavy water bridge. J. Phys. D Appl. Phys. 2009;42:065502. doi: 10.1088/0022-3727/42/6/065502. DOI

Giuliani L., D’Emilia E., Lisi A., Grimaldi S., Foletti A., Del Giudice E. The Floating Water Bridge under Strong Electric Potential. Neural Netw. World. 2009;19:393–398.

Tyner K.M., Kopelman R., Philbert M.A. “Nanosized voltmeter” enables cellular-wide mapping. Biophys. J. 2007;93:1163–1174. doi: 10.1529/biophysj.106.092452. PubMed DOI PMC

Pokorný J. Physical Aspects of biological activity and cancer. AIP Adv. 2012;2:0112071. doi: 10.1063/1.3699057. DOI

Alberts B., Bray D., Lewis J., Raff M., Roberts K., Watson J.D. Molecular Biology of the Cell. 3rd ed. Garland Publishing, Inc.; New York, NY, USA; London, UK: 1994.

Kolobova E., Tuganova A., Boulatnikov I., Popov K.M. Regulation of pyruvate dehydrogenase activity through phosphorylation at multiple sites. Biochem. J. 2001;358:69–77. doi: 10.1042/bj3580069. PubMed DOI PMC

Amos L.A., Klug A.J. Arrangement of Subunits in Flagellar Microtubules. Cell Sci. 1974;14:523–549. PubMed

Satarić M., Tuszyński J.A., Žakula R.B. Kinklike Excitations as an Energy Transfer Mechanism in Microtubules. Phys. Rev. E. 1993;48:589–597. doi: 10.1103/PhysRevE.48.589. PubMed DOI

Tuszyński J.A., Hameroff S., Satarić M., Trpisová B., Nip M.L.A. Ferroelectric Behavior in Microtubule Dipole Lattices: Implications for Information Processing, Signaling and Assembly/Disassembly. J. Theor. Biol. 1995;174:371–380. doi: 10.1006/jtbi.1995.0105. DOI

Pokorný J., Jelínek F., Trkal V., Lamprecht I., Hölzel R. Vibrations in Microtubules. J. Biol. Phys. 1997;23:171–179. doi: 10.1023/A:1005092601078. PubMed DOI PMC

Pokorný J. Excitation of vibration in microtubules in living cell. Bioelectrochemistry. 2004;63:321–326. doi: 10.1016/j.bioelechem.2003.09.028. PubMed DOI

Pelling A.E., Sehati S., Gralla E.B., Valentine J.S., Gimzewski J.K. Local nano-mechanical motion of the cell wall of Saccharomyces cerevisiae. Science. 2004;305:1147–1150. doi: 10.1126/science.1097640. PubMed DOI

Pokorný J., Hašek J., Vaniš J., Jelínek F. Biophysical aspects of cancer—Electromagnetic mechanism. Indian J. Exp. Biol. 2008;46:310–321. PubMed

Pokorný J. Biophysical Cancer Transformation Pathway. Electromagn. Biol. Med. 2009;28:105–123. doi: 10.1080/15368370802711615. PubMed DOI

Pelling A.E., Sehati S., Gralla E.B., Gimzewski J.K. Time dependence of the frequency and amplitude of the local nanomechanical motion of yeast. Nanomed. Nanotechnol. Biol. Med. 2005;1:178–183. doi: 10.1016/j.nano.2005.04.002. PubMed DOI

Jelínek F., Cifra M., Pokorný J., Vaniš J., Šimša J., Hašek J., Frýdlová I. Measurement of Electrical Oscillations and Mechanical Vibrations of Yeast Cells Membrane around 1 kHz. Electromagn. Biol. Med. 2009;28:223–232. doi: 10.1080/15368370802710807. PubMed DOI

Kasas S., Ruggeri F.S., Benadiba C., Maillard C., Stupar P., Tournu H., Dietler G., Longo G. Detecting nanoscale vibrations as signature of life. Proc. Natl. Acad. Sci. USA. 2015;112:378–381. doi: 10.1073/pnas.1415348112. PubMed DOI PMC

Pohl H.A., Braden T., Robinson S., Piclardi J., Pohl D.G. Life cycle alterations of the micro-dielectrophoretic effects of cells. J. Biol. Phys. 1981;9:133–154. doi: 10.1007/BF01988247. DOI

Pokorný J., Hašek J., Jelínek F., Šaroch J., Palán B. Electromagnetic Activity of Yeast Cells in the M Phase. Electro Magnetobiol. 2001;20:371–396. doi: 10.1081/JBC-100108577. DOI

Havelka D., Kučera O., Deriu M.A., Cifra M. Electro-Acoustic Behavior of the Mitotic Spindle: A Semi-Classical Coarse-Grained Model. PLoS ONE. 2014;9:e86501. doi: 10.1371/journal.pone.0086501. PubMed DOI PMC

Sahu S., Ghosh S., Ghosh B., Aswani K., Hirata K., Fujita D., Bandyopadhyay A. Atomic water channel controlling remarkable properties of a single brain microtubule: Correlating single protein to its supramolecular assembly. Biosens. Bioelectron. 2013;47:141–148. doi: 10.1016/j.bios.2013.02.050. PubMed DOI

Sahu S., Ghosh S., Fujita D., Bandyopadhyay A. Live visualizations of single isolated tubulin protein self-assembly via tunneling current: Effect of electromagnetic pumping during spon-taneous growth of microtubule. Sci. Rep. 2014;4:7303. doi: 10.1038/srep07303. PubMed DOI PMC

Alexandrov L.B., Nik–Zainal S., Wedge D.C., Aparicio S.A.J.R., Behjati S., Biankin A.V., Bignell G.R., Bolli N., Borg A., Børresen-Dale A.-L., et al. Signature of mutational processes in human cancers. Nature. 2013;500:415–421. doi: 10.1038/nature12477. PubMed DOI PMC

Davies H., Bignell G.R., Cox Ch., Stephens P., Edkins S., Clegg S., Teague J., Woffendin H., Garnett M.J., Bottomley W., et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–954. doi: 10.1038/nature00766. PubMed DOI

Dhomen N., Reis-Filho J.S., da Rocha Dias S., Hayward R., Savage K., Delmas V., Larue L., Pritchard C., Marais R. Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell. 2009;15:294–303. doi: 10.1016/j.ccr.2009.02.022. PubMed DOI

Dankort D., Curley D.P., Cartlidge R.A., Nelson B., Karnezis A.N., Damsky W.E., Jr., You M.J., DePinho R.A., McMahon M., Bosenberg M. BrafV600E cooperates with Pten loss to induce metastatic melanoma. Nat. Genet. 2009;41:544–552. PubMed PMC

Tsai J., Lee J.T., Wang W., Zhang J., Cho H., Mamo S., Bremer R., Gillette S., Kong J., Haass N.K., Sproesser K., Li L., Smalley K.S.M., Fong D., et al. Discovery of a selective áinhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc. Natl. Acad. Sci. USA. 2008;105:3041–3046. doi: 10.1073/pnas.0711741105. PubMed DOI PMC

Vredeveld L.C.W., Possik P.A., Smit M.A., Meissl K., Michaloglou Ch., Horlings H.M., Ajouaou A., Kortman P.C., Dankort D., McMahon M., et al. Abrogation of BRAFV600E-induced senescence by PI3K pathway activation contributes to melanomagenesis. Genes Dev. 2012;26:1055–1069. doi: 10.1101/gad.187252.112. PubMed DOI PMC

Jandová A., Hurych J., Pokorný J., Čoček A., Trojan S., Nedbalová M., Dohnalová A. Effects of Sinusoidal Magnetic Field on Adherence Inhibition of Leukocytes. Electro Magnetobiol. 2001;20:397–413. doi: 10.1081/JBC-100108578. PubMed DOI

Jandová A., Pokorný J., Kobilková J., Janoušek M., Mašata J., Trojan S., Beková A., Slavík V., Čoćek A., Sanitrák J. Cell-mediated immunity in cervical cancer evolution. Electromagn. Biol. Med. 2009;28:1–14. doi: 10.1080/15368370802708868. PubMed DOI

Brinton M.A. Lactate Dehydrogenase-Elevating, Equine Arteritis and Lelystad Viruses. Academic Press Ltd.; London, UK; San Diego, CA, USA: 1994. pp. 763–771. Encyclopedia of Virology 2.

Plagemann P.G.W. Lactate dehydrogenase-elevating virus and related viruses. In: Fields B.N., Knipe D.M., Howley P.M., editors. Virology. 3rd ed. Raven Press; New York, NY, USA: 1996. pp. 1105–1120.

Kaplon J., Zheng L., Meissl K., Chaneton B., Selivanov V.A., Mackay G., van der Burg S.H., Verdegaal E.M.E., Cascante M., Shlomi T., et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene–induced senescence. Nature. 2013;498:109–112. doi: 10.1038/nature12154. PubMed DOI

Pokorný J., Vedruccio C., Cifra M., Kučera O. Cancer physics: Diagnostics based on damped cellular elastoelectrical vibrations in microtubules. Eur. Biophys. J. 2011;40:747–759. doi: 10.1007/s00249-011-0688-1. PubMed DOI

Pokorný J., Foletti A., Kobilková J., Jandová A., Vrba J., Vrba J., Jr., Nedbalová M., Čoćek A., Danani A., Tuszyński J.A. Biophysical Insights into Cancer Transformation and Treatment. Sci. World J. 2013 doi: 10.1155/2013/195028. PubMed DOI PMC

Beil M., Micoulet A., von Wichert G., Paschke S., Walther P., Omary M.B., Van Veldhoven P.P., Gern U., Wolff-Hieber E., Eggermann J., et al. Sphingosylphosphorylcholine regulates keratin network architecture and visco–elastic properties of human cancer cells. Nat. Cell Biol. 2003;5:803–811. doi: 10.1038/ncb1037. PubMed DOI

Pavlides S., Whitaker-Menezes D., Castello-Cros R., Flomenberg N., Witkiewicz A.K., Frank P.G., Casimiro M.C., Wang C., Fortina P., Addya S., et al. Reverse Warburg effect. Aerobic glycolysis and cancer associated fibroblasts and their tumor stroma. Cell Cycle. 2009;8:3984–4001. doi: 10.4161/cc.8.23.10238. PubMed DOI

Pokorný J., Pokorný J., Kobilková J., Jandová A., Vrba J., Vrba J., Jr. Targeting Mitochondria for Cancer Treatment—Two Types of Mitochondrial Dysfunction. Prague Med. Rep. 2014;115:104–119. doi: 10.14712/23362936.2014.41. PubMed DOI

Pokorný J., Pokorný J., Kobilková J. Postulates on electromagnetic activity in biological systems and cancer. Integr. Biol. 2013;5:1439–1446. doi: 10.1039/c3ib40166a. PubMed DOI

Pokorný J., Pokorný J., Kobilková J., Jandová A., Vrba J., Vrba J., Jr. Cancer—Pathological breakdown of coherent energy states. Biophys. Rev. Lett. 2014;9:115–133. doi: 10.1142/S1793048013300077. DOI

Pokorný J., Cifra M., Jandová A., Kučera O., Šrobár F., Vrba J., Vrba J., Jr., Kobilková J. Targeting mitochondria for cancer treatment. Eur. J. Oncol. 2012;17:23–36.

Pokorný J., Jandová A., Nedbalová M., Jelínek F., Cifra M., Kučera O., Havelka D., Vrba J., Vrba J., Jr., Čoček A., Kobilková J. Mitochondrial metabolism—Neglected link of cancer transformation and treatment. Prague Med. Rep. 2012;113:81–94. PubMed

Pokorný J., Pokorný J. Biophysical Pathology in Cancer Transformation. J. Clin. Exp. Oncol. 2013 doi: 10.4172/2324-9110.S1-003. DOI

Vedruccio C., Meessen A. EM cancer detection by means of non linear resonance interaction; Proceedings of the PIERS Progress in Electromagnetics Research Symposium; Pisa, Italy. 28–31 March 2004; pp. 909–912.

Traill R.R. Asbestos as “toxic short-circuit” optic-fibre for UV within the cell-net: —Likely roles and hazards for secret UV and IR metabolism; Proceedings of the 9th International Fröhlich’s Symposium, Electrodynamic Activity of Living Cells; Prague, Czech Republic. 1–3 July 2011; p. 012017.

Toyokuni S. Mechanism of Asbestos-Induced Carcinogenesis. Nagoya J. Med. Sci. 2009;71:1–10. doi: 10.1265/jjh.66.562. PubMed DOI PMC

Pavlides S., Tsirigos A., Migneco G., Whitaker-Menezes D., Chiavarina B., Flomenberg N., Frank P.G., Casimiro M.C., Wang C., Pestell R.G., et al. The autophagic tumor stroma model of cancer. Role of oxidative stress and ketone production in fuelling tumor cell metabolism. Cell Cycle. 2010;9:3485–3505. doi: 10.4161/cc.9.17.12721. PubMed DOI PMC

Bonuccelli G., Whitaker-Menezes D., Castello-Cros R., Pavlides S., Pestell R.G., Fatatis A., Witkiewicz A.K., Vander Heiden M.G., Migneco G., Chiavarina B., et al. The reverse Warburg effect. Glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle. 2010;9:1960–1971. doi: 10.4161/cc.9.10.11601. PubMed DOI

Chiavarina B., Whitaker–Menezes D., Migneco G., Martinez-Outschoorn U.E., Pavlides S., Howell A., Tanowitz H.B., Casimiro M.C., Wang C., Pestell R.G., et al. HIF1-alpha functions as a tumor promoter in cancer associated fibroblasts, and as a tumor suppressor in breast cancer cells. Autophagy drives compartment-specific oncogenesis. Cell Cycle. 2010;9:3534–3551. doi: 10.4161/cc.9.17.12908. PubMed DOI PMC

Ko Y.H., Lin Z., Flomenberg N., Pestell R.G., Howell A., Sotgia F., Lisanti M.P., Martinez-Outschoorn U.E. Glutamine fuels a vicious cycle of autophagy in the tumor stroma and oxidative mitochondrial metabolism in epithelial cancer cells. Implications for preventing chemotherapy resistance. Cancer Biol. Ther. 2011;12:1085–1097. doi: 10.4161/cbt.12.12.18671. PubMed DOI PMC

Martinez-Outschoorn U.E., Trimmer C., Lin Z., Whitaker-Menezes D., Chiavarina B., Zhou J., Wang C., Pavlides S., Martinez-Cantarin M.P., Cappozza F., et al. Autophagy in cancer associated fibroblasts promotes tumor cell survival. Role of hypoxia, HIF1 induction and NFκB activation in the tumor stromal microenvironment. Cell Cycle. 2010;9:3515–3533. doi: 10.4161/cc.9.17.12928. PubMed DOI PMC

Martinez–Outschoorn U.E., Lin Z., Ko Y.H., Goldberg A.F., Flomenberg N., Wang C., Pavlides S., Pestell R.G., Howell A., Sotgia F., Lisanti M.P. Understanding the metabolic basis of drug resistance. Therapeutic induction of the Warburg effect kills cancer cells. Cell Cycle. 2011;10:2521–2528. doi: 10.4161/cc.10.15.16584. PubMed DOI PMC

Bonuccelli G., Tsirigos A., Whitaker-Menezes D., Pavlides S., Pestell R.G., Chiavarina B., Frank P/G., Flomenberg N., Howell A., Martinez-Outschoorn U.E., et al. Ketones and lactate “fuel” tumor growth and metastasis. Evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle. 2010;9:3506–3514. doi: 10.4161/cc.9.17.12731. PubMed DOI PMC

Migneco G., Whitaker–Menezes D., Chiavarina B., Castello-Cros R.C., Pavlides S., Pestell R.G., Fatatis A., Flomenberg N., Tsirigos A., Howell A., et al. Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis. Evidence for stromal-epithelial metabolic coupling. Cell Cycle. 2010;9:2412–2422. doi: 10.4161/cc.9.12.11989. PubMed DOI

Mejsnarová B., Jandová A., Kupec M., Motyčka K., Heyberger K., Čoupek J., Kobilková J. Increased frequency of associations of acrocentric chromosomes brought about by the LDH virus in fertile women. Sborník Lékařský. 1981;83:332–335. (In Czech) PubMed

Jandová A., Pokorný J., Pokorný J., Kobilková J., Nedbalová M., Čoček A., Jelínek F., Vrba J., Vrba J., Jr., Dohnalová A., et al. Diseases caused by defects of energy level and loss of coherence in living cells. Electromagn. Biol. Med. 2015;34:151–155. doi: 10.3109/15368378.2015.1036076. PubMed DOI

Penrose R. Shadows of the Mind. Oxford Press; London, UK: 1994.

Hagan S., Hameroff S., Tuszyński J. Quantum computation in brain microtubules: Decoherence and biological feasibility. Phys. Rev. E. 2002;65:061901. doi: 10.1103/PhysRevE.65.061901. PubMed DOI

Hameroff S., Penrose R. Consciousness in the universe: A review of the “Orch OR” theory. Phys. Life Rev. 2014;11:39–78. doi: 10.1016/j.plrev.2013.08.002. PubMed DOI

Tomasetti C., Vogelstein B. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science. 2015;347:78–81. doi: 10.1126/science.1260825. PubMed DOI PMC

Ralph S.J., Pritchard R., Rodríguez-Enríquez S., Moreno-Sánchez R., Ralph R.K. Hitting the Bull’s-Eye in Metastatic Cancers—NSAIDs Elevate ROS in Mitochondria, Inducing Malignant Cell Death. Pharmaceuticals. 2015;8:62–106. doi: 10.3390/ph8010062. PubMed DOI PMC

Fan J., Kamphorst J.J., Mathew R., Chung M.K., White E., Shlomi T., Rabinowitz J.D. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol. Syst. Biol. 2013;9 doi: 10.1038/msb.2013.65. PubMed DOI PMC

Mitsuishi Y., Taguchi K., Kawatani Y., Shibata T., Nukiwa T., Aburatani H., Yamamoto M., Motohashi H. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell. 2012;22:66–79. doi: 10.1016/j.ccr.2012.05.016. PubMed DOI

Michalak K.P., Maćkowska-Kędziora A., Sobolewski B., Woźniak P. Key Roles of Glutamine Pathways in Reprogramming the Cancer Metabolism. Hindawi Oxidative Med. Cell. Longev. 2015;2015:964321. PubMed PMC

Bonnet S., Archer S.L., Allalunis-Turner J., Haromy A., Beaulieu C., Thompson R., Lee C.T., Lopaschuk G.D., Puttagunta L., Bonnet S., et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 2007;11:37–51. doi: 10.1016/j.ccr.2006.10.020. PubMed DOI

Tennant A.D., Durán R.V., Gottlieb E. Targeting metabolic transformation for cancer therapy. Nat. Rev. 2010;10:267–277. doi: 10.1038/nrc2817. PubMed DOI

Preto J., Pettini M., Tuszynski J.A. Possible role of electrodynamic interactions in long-distance biomolecular recognition. Phys. Rev. E. 2015;91:052710. doi: 10.1103/PhysRevE.91.052710. PubMed DOI

Jandová A., Pokorný J., Čoček A., Trojan S., Nedbalová M., Dohnalová A. Effects of Sinusoidal 0.5 mT Magnetic Field on Leukocyte Adherence Inhibition. Electromagn. Biol. Med. 2004;23:81–96. doi: 10.1081/LEBM-200032766. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...