The Relation between eNOS -786 C/T, 4 a/b, MMP-13 rs640198 G/T, Eotaxin 426 C/T, -384 A/G, and 67 G/A Polymorphisms and Long-Term Outcome in Patients with Coronary Artery Disease
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26491210
PubMed Central
PMC4605266
DOI
10.1155/2015/232048
Knihovny.cz E-zdroje
- MeSH
- chemokin CCL11 genetika MeSH
- jednonukleotidový polymorfismus * MeSH
- lidé středního věku MeSH
- lidé MeSH
- matrixová metaloproteinasa 13 genetika MeSH
- nemoci koronárních tepen diagnóza genetika MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- synthasa oxidu dusnatého, typ III genetika MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chemokin CCL11 MeSH
- matrixová metaloproteinasa 13 MeSH
- MMP13 protein, human MeSH Prohlížeč
- synthasa oxidu dusnatého, typ III MeSH
AIM: The purpose of this study is to determine the association between eotaxin 426 C/T, -384 A/G, 67 G/A, eNOS -786 T/C, 4 a/b, and MMP-13 rs640198 G/T and prognosis of patients with known CAD. METHODS: From total of 1161 patients referred to coronary angiography, 532 patients with angiographically confirmed CAD were selected. Their long-term outcome was followed up using hospital database. Subsequent events were assessed in this study: death or combined endpoint-myocardial infarction, unstable angina pectoris, revascularization, heart failure hospitalization, and cardioverter-defibrillator implantation. RESULTS: The multivariate Cox regression model identified age, smoking, and 3-vessel disease as significant predictors of all-cause death. Further analysis showed that eotaxin 67 G/A (GA + AA versus GG) and eotaxin -384 A/G (GG versus GA + AA) were significant independent prognostic factors when added into the model: HR (95% CI) 2.81 (1.35-5.85), p = 0.006; HR (95% CI) 2.63 (1.19-5.83), p = 0.017; eotaxin -384 A/G was significantly associated with the event-free survival, but it did not provide the prognostic information above the effect of two- or three-vessel disease. CONCLUSION: The A allele in eotaxin 67 G/A polymorphism is associated with worse survival in CAD patients.
Zobrazit více v PubMed
Abraham G., Bhalala O. G., de Bakker P. I. W., Ripatti S., Inouye M. Towards a molecular systems model of coronary artery disease. Current Cardiology Reports. 2014;16, article 488 doi: 10.1007/s11886-014-0488-1. PubMed DOI PMC
Prins B. P., Lagou V., Asselbergs F. W., Snieder H., Fu J. Genetics of coronary artery disease: genome-wide association studies and beyond. Atherosclerosis. 2012;225(1):1–10. doi: 10.1016/j.atherosclerosis.2012.05.015. PubMed DOI
Koch W., Mehilli J., Pfeufer A., Schömig A., Kastrati A. Apolipoprotein E gene polymorphisms and thrombosis and restenosis after coronary artery stenting. Journal of Lipid Research. 2004;45(12):2221–2226. doi: 10.1194/jlr.M400148-JLR200. PubMed DOI
Blankenberg S., Rupprecht H. J., Bickel C., et al. Common genetic variation of the cholesteryl ester transfer protein gene strongly predicts future cardiovascular death in patients with coronary artery disease. Journal of the American College of Cardiology. 2003;41(11):1983–1989. doi: 10.1016/s0735-1097(03)00408-x. PubMed DOI
Szpakowicz A., Pepinski W., Waszkiewicz E., et al. The influence of renal function on the association of rs854560 polymorphism of paraoxonase 1 gene with long-term prognosis in patients after myocardial infarction. Heart and Vessels. 2014 doi: 10.1007/s00380-014-0574-8. PubMed DOI PMC
Maiolino G., Lenzini L., Pedon L., et al. Lipoprotein-associated phospholipase A2 single-nucleotide polymorphisms and cardiovascular events in patients with coronary artery disease. Journal of Cardiovascular Medicine. 2015;16(1):29–36. doi: 10.2459/JCM.0000000000000057. PubMed DOI
Ellis K. L., Frampton C. M., Pilbrow A. P., et al. Genomic risk variants at 1p13.3, 1q41, and 3q22.3 are associated with subsequent cardiovascular outcomes in healthy controls and in established coronary artery disease. Circulation: Cardiovascular Genetics. 2011;4(6):636–646. doi: 10.1161/circgenetics.111.960336. PubMed DOI
Arking D. E., Chakravarti A. Understanding cardiovascular disease through the lens of genome-wide association studies. Trends in Genetics. 2009;25(9):387–394. doi: 10.1016/j.tig.2009.07.007. PubMed DOI
The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–678. doi: 10.1038/nature05911. PubMed DOI PMC
Helgadottir A., Thorleifsson G., Manolescu A., et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007;316(5830):1491–1493. doi: 10.1126/science.1142842. PubMed DOI
McPherson R., Pertsemlidis A., Kavaslar N., et al. A common allele on chromosome 9 associated with coronary heart disease. Science. 2007;316(5830):1488–1491. doi: 10.1126/science.1142447. PubMed DOI PMC
Samani N. J., Erdmann J., Hall A. S., et al. Genomewide association analysis of coronary artery disease. The New England Journal of Medicine. 2007;357(5):443–453. doi: 10.1056/nejmoa072366. PubMed DOI PMC
Schunkert H., Götz A., Braund P., et al. Repeated replication and a prospective meta-analysis of the association between chromosome 9p21.3 and coronary artery disease. Circulation. 2008;117(13):1675–1684. doi: 10.1161/circulationaha.107.730614. PubMed DOI PMC
Brautbar A., Ballantyne C. M., Lawson K., et al. Impact of adding a single allele in the 9p21 locus to traditional risk factors on reclassification of coronary heart disease risk and implications for lipid-modifying therapy in the atherosclerosis risk in communities study. Circulation: Cardiovascular Genetics. 2009;2(3):279–285. doi: 10.1161/circgenetics.108.817338. PubMed DOI PMC
Bäck M., Ketelhuth D. F. J., Agewall S. Matrix metalloproteinases in atherothrombosis. Progress in Cardiovascular Diseases. 2010;52(5):410–428. doi: 10.1016/j.pcad.2009.12.002. PubMed DOI
Haley K. J., Lilly C. M., Yang J.-H., et al. Overexpression of eotaxin and the CCR3 receptor in human atherosclerosis: using genomic technology to identify a potential novel pathway of vascular inflammation. Circulation. 2000;102(18):2185–2189. doi: 10.1161/01.cir.102.18.2185. PubMed DOI
Deguchi J.-O., Aikawa E., Libby P., et al. Matrix metalloproteinase-13/collagenase-3 deletion promotes collagen accumulation and organization in mouse atherosclerotic plaques. Circulation. 2005;112(17):2708–2715. doi: 10.1161/circulationaha.105.562041. PubMed DOI
Yoon S., Kuivaniemi H., Gatalica Z., et al. MMP13 promoter polymorphism is associated with atherosclerosis in the abdominal aorta of young black males. Matrix Biology. 2002;21(6):487–498. doi: 10.1016/s0945-053x(02)00053-7. PubMed DOI
Vašku A., Meluzín J., Blahák J., et al. Matrix metalloproteinase 13 genotype in rs640198 polymorphism is associated with severe coronary artery disease. Disease Markers. 2012;33(1):43–49. doi: 10.3233/DMA-2012-0902. PubMed DOI PMC
Van Coillie E., Van Damme J., Opdenakker G. The MCP/eotaxin subfamily of CC chemokines. Cytokine & Growth Factor Reviews. 1999;10(1):61–86. doi: 10.1016/s1359-6101(99)00005-2. PubMed DOI
Emanuele E., Falcone C., D'Angelo A., et al. Association of plasma eotaxin levels with the presence and extent of angiographic coronary artery disease. Atherosclerosis. 2006;186(1):140–145. doi: 10.1016/j.atherosclerosis.2005.07.002. PubMed DOI
Raaz-Schrauder D., Klinghammer L., Baum C., et al. Association of systemic inflammation markers with the presence and extent of coronary artery calcification. Cytokine. 2012;57(2):251–257. doi: 10.1016/j.cyto.2011.11.015. PubMed DOI
Miyamasu M., Sekiya T., Ohta K., et al. Variations in the human CC chemokine eotaxin gene. Genes and Immunity. 2001;2(8):461–463. doi: 10.1038/sj.gene.6363807. PubMed DOI
Wang Y., Luk A. O. Y., Ma R. C. W., et al. Independent predictive roles of eotaxin Ala23Thr, paraoxonase 2 Ser311Cys and β 3-adrenergic receptor Trp64Arg polymorphisms on cardiac disease in type 2 diabetes—an 8-year prospective cohort analysis of 1297 patients. Diabetic Medicine. 2010;27(4):376–383. doi: 10.1111/j.1464-5491.2010.02980.x. PubMed DOI
Chang H. S., Kim J. S., Lee J. H., et al. A single nucleotide polymorphism on the promoter of eotaxin1 associates with its mRNA expression and asthma phenotypes. The Journal of Immunology. 2005;174(3):1525–1531. doi: 10.4049/jimmunol.174.3.1525. PubMed DOI
Rigoli L., Caminiti L., Di Bella C., et al. Investigation of the eotaxin gene −426C → T, −384A → G and 67G → A single-nucleotide polymorphisms and atopic dermatitis in Italian children using family-based association methods. Clinical and Experimental Dermatology. 2008;33(3):316–321. doi: 10.1111/j.1365-2230.2007.02672.x. PubMed DOI
Albrecht E. W. J. A., Stegeman C. A., Heeringa P., Henning R. H., van Goor H. Protective role of endothelial nitric oxide synthase. The Journal of Pathology. 2003;199(1):8–17. doi: 10.1002/path.1250. PubMed DOI
Wang X. L., Mahaney M. C., Sim A. S., et al. Genetic contribution of the endothelial constitutive nitric oxide synthase gene to plasma nitric oxide levels. Arteriosclerosis, Thrombosis, and Vascular Biology. 1997;17(11):3147–3153. doi: 10.1161/01.atv.17.11.3147. PubMed DOI
Nakayama M., Yasue H., Yoshimura M., et al. T−786 → C mutation in the 5′-flanking region of the endothelial nitric oxide synthase gene is associated with coronary spasm. Circulation. 1999;99(22):2864–2870. doi: 10.1161/01.cir.99.22.2864. PubMed DOI
Máchal J., Vašků A., Kincl V., et al. Association between three single nucleotide polymorphisms in eotaxin (CCL 11) gene, hexanucleotide repetition upstream, severity and course of coronary atherosclerosis. Journal of Applied Genetics. 2012;53(3):271–278. doi: 10.1007/s13353-012-0104-2. PubMed DOI
Kincl V., Vasků A., Meluzín J., Panovský R., Seménka J., Groch L. Association of the eNOS 4a/b and -786T/C polymormphisms with coronary artery disease, obesity and diabetes mellitus. Folia Biologica. 2009;55:187–191. PubMed
Gaunt T. R., Rodriguez S., Zapata C., Day I. N. M. MIDAS: software for analysis and visualisation of interallelic disequilibrium between multiallelic markers. BMC Bioinformatics. 2006;7, article 227 doi: 10.1186/1471-2105-7-227. PubMed DOI PMC
Ardigo D., Assimes T. L., Fortmann S. P., et al. Circulating chemokines accurately identify individuals with clinically significant atherosclerotic heart disease. Physiological Genomics. 2007;31(3):402–409. doi: 10.1152/physiolgenomics.00104.2007. PubMed DOI
Mosedale D. E., Smith D. J., Aitken S., et al. Circulating levels of MCP-1 and eotaxin are not associated with presence of atherosclerosis or previous myocardial infarction. Atherosclerosis. 2005;183(2):268–274. doi: 10.1016/j.atherosclerosis.2004.11.028. PubMed DOI
Canouï-Poitrine F., Luc G., Mallat Z., et al. Systemic chemokine levels, coronary heart disease, and ischemic stroke events: the PRIME study. Neurology. 2011;77(12):1165–1173. doi: 10.1212/wnl.0b013e31822dc7c8. PubMed DOI PMC
Wyss C. A., Neidhart M., Altwegg L., et al. Cellular actors, Toll-like receptors, and local cytokine profile in acute coronary syndromes. European Heart Journal. 2010;31(12):1457–1469. doi: 10.1093/eurheartj/ehq084. PubMed DOI
Kodali R. B., Kim W. J. H., Galaria I. I., et al. CCL11 (Eotaxin) induces CCR3-dependent smooth muscle cell migration. Arteriosclerosis, Thrombosis, and Vascular Biology. 2004;24(7):1211–1216. doi: 10.1161/01.atv.0000131654.90788.f5. PubMed DOI
Hao H., Gabbiani G., Bochaton-Piallat M.-L. Arterial smooth muscle cell heterogeneity: implications for atherosclerosis and restenosis development. Arteriosclerosis, Thrombosis, and Vascular Biology. 2003;23(9):1510–1520. doi: 10.1161/01.atv.0000090130.85752.ed. PubMed DOI
Schwartz S. M., DeBlois D., O'Brien E. R. M. The intima: soil for atherosclerosis and restenosis. Circulation Research. 1995;77(3):445–465. doi: 10.1161/01.res.77.3.445. PubMed DOI
Nakamura H., Luster A. D., Nakamura T., et al. Variant eotaxin: its effects on the asthma phenotype. Journal of Allergy and Clinical Immunology. 2001;108(6):946–953. doi: 10.1067/mai.2001.120135. PubMed DOI
Wang T.-N., Chiang W., Tseng H.-I., et al. The polymorphisms of Eotaxin 1 and CCR3 genes influence on serum IgE, Eotaxin levels and mild asthmatic children in Taiwan. Allergy. 2007;62(10):1125–1130. doi: 10.1111/j.1398-9995.2007.01485.x. PubMed DOI
Loughrey B. V., McGinty A., Young I. S., McCance D. R., Powell L. A. Increased circulating CC chemokine levels in the metabolic syndrome are reduced by low-dose atorvastatin treatment: evidence from a randomized controlled trial. Clinical Endocrinology. 2013;79(6):800–806. doi: 10.1111/cen.12113. PubMed DOI
Wang W., Le W., Ahuja R., Cho D.-Y., Hwang P. H., Upadhyay D. Inhibition of inflammatory mediators: role of statins in airway inflammation. Otolaryngology: Head and Neck Surgery. 2011;144(6):982–987. doi: 10.1177/0194599811400367. PubMed DOI
Zeki A. A., Thai P., Kenyon N. J., Wu R. Differential effects of simvastatin on IL-13-induced cytokine gene expression in primary mouse tracheal epithelial cells. Respiratory Research. 2012;13, article 38 doi: 10.1186/1465-9921-13-38. PubMed DOI PMC
Sheikine Y., Olsen B., Gharizadeh B., Jatta K., Tornvall P., Ghaderi M. Influence of eotaxin 67G>A polymorphism on plasma eotaxin concentrations in myocardial infarction survivors and healthy controls. Atherosclerosis. 2006;189(2):458–463. doi: 10.1016/j.atherosclerosis.2006.01.003. PubMed DOI
Zee R. Y. L., Cook N. R., Cheng S., et al. Threonine for alanine substitution in the eotaxin (CCL11) gene and the risk of incident myocardial infarction. Atherosclerosis. 2004;175(1):91–94. doi: 10.1016/j.atherosclerosis.2004.01.042. PubMed DOI
Opstad T. B., Arnesen H., Pettersen A. Å., Seljeflot I. The MMP-9 -1562 C/T polymorphism in the presence of metabolic syndrome increases the risk of clinical events in patients with coronary artery disease. PLoS ONE. 2014;9(9) doi: 10.1371/journal.pone.0106816.e106816 PubMed DOI PMC
Opstad T. B., Pettersen A. Å., Arnesen H., Seljeflot I. The co-existence of the IL-18+183 A/G and MMP-9 -1562 C/T polymorphisms is associated with clinical events in coronary artery disease patients. PLoS ONE. 2013;8(9) doi: 10.1371/journal.pone.0074498.e74498 PubMed DOI PMC
Humphries S., Bauters C., Meirhaeghe A., Luong L., Bertrand M., Amouyel P. The 5A6A polymorphism in the promoter of the stromelysin-1 (MMP3) gene as a risk factor for restenosis. European Heart Journal. 2002;23(9):721–725. doi: 10.1053/euhj.2001.2895. PubMed DOI
Rai H., Parveen F., Kumar S., Kapoor A., Sinha N. Association of endothelial nitric oxide synthase gene polymorphisms with coronary artery disease: an updated meta-analysis and systematic review. PLoS ONE. 2014;9(11) doi: 10.1371/journal.pone.0113363.e113363 PubMed DOI PMC