ToPASeq: an R package for topology-based pathway analysis of microarray and RNA-Seq data

. 2015 Oct 29 ; 16 () : 350. [epub] 20151029

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26514335
Odkazy

PubMed 26514335
PubMed Central PMC4625615
DOI 10.1186/s12859-015-0763-1
PII: 10.1186/s12859-015-0763-1
Knihovny.cz E-zdroje

BACKGROUND: Pathway analysis methods, in which differentially expressed genes are mapped to databases of reference pathways and relative enrichment is assessed, help investigators to propose biologically relevant hypotheses. The last generation of pathway analysis methods takes into account the topological structure of a pathway, which helps to increase both specificity and sensitivity of the findings. Simultaneously, the RNA-Seq technology is gaining popularity and becomes widely used for gene expression profiling. Unfortunately, majority of topological pathway analysis methods remains without implementation and if an implementation exists, it is limited in various factors. RESULTS: We developed a new R/Bioconductor package ToPASeq offering uniform interface to seven distinct topology-based pathway analysis methods, of which three we implemented de-novo and four were adjusted from existing implementations. Apart this, ToPASeq offers a set of tailored visualization functions and functions for importing and manipulating pathways and their topologies, facilitating the application of the methods on different species. The package can be used to compare the differential expression of pathways between two conditions on both gene expression microarray and RNA-Seq data. The package is written in R and is available from Bioconductor 3.2 using AGPL-3 license. CONCLUSION: ToPASeq is a novel package that offers seven distinct methods for topology-based pathway analysis, which are easily applicable on microarray as well as RNA-Seq data, both in human and other species. At the same time, it provides specific tools for visualization of the results.

Zobrazit více v PubMed

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci. 2005;102(43):15545–15550. doi: 10.1073/pnas.0506580102. PubMed DOI PMC

Mitrea C, Taghavi Z, Bokanizad B, Hanoudi S, Tagett R, Donato M, et al. Methods and approaches in the topology-based analysis of biological pathways. Front Physiol. 2013;4(278):1–22. PubMed PMC

Goeman JJ, Bühlmann P. Analyzing gene expression data in terms of gene sets: methodological issues. Bioinforma. 2007;23(8):980–7. doi: 10.1093/bioinformatics/btm051. PubMed DOI

Dillies MA, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N, et al. A comprehensive evaluation of normalization methods for illumina high-throughput rna sequencing data analysis. Brief Bioinform. 2013;14(6):671–83. doi: 10.1093/bib/bbs046. PubMed DOI

Soneson C, Delorenzi M. A comparison of methods for differential expression analysis of rna-seq data. BMC Bioinforma. 2013;14(1):91. doi: 10.1186/1471-2105-14-91. PubMed DOI PMC

Rapaport F, Khanin R, Liang Y, Pirun M, Krek A, Zumbo P, et al. Comprehensive evaluation of differential gene expression analysis methods for rna-seq data. Genome Biol. 2013;14(9):95. doi: 10.1186/gb-2013-14-9-r95. PubMed DOI PMC

Seyednasrollah F, Laiho A, Elo LL. Comparison of software packages for detecting differential expression in rna-seq studies. Brief Bioinforma. 2015;16(1):59–70. doi: 10.1093/bib/bbt086. PubMed DOI PMC

Gao S, Wang X. Tappa: topological analysis of pathway phenotype association. Bioinforma. 2007;23(22):3100–102. doi: 10.1093/bioinformatics/btm460. PubMed DOI PMC

Thomson R. MetaCoreTM Data-mining and Pathway Analysis. http://thomsonreuters.com/metacore/. Access Date: 13 Jul 2013.

Tarca AL, Kathri P, Draghici S. SPIA: Signaling Pathway Impact Analysis (SPIA) Using Combined Evidence of Pathway Over-representation and Unusual Signaling Perturbations, R package version 2.16.0. 2013. http://bioinformatics.oxfordjournals.org/cgi/reprint/btn577v1. Access Date: 10 Sep 2013.

Hung JH. PWEA Pathway Enrichment Analysis. http://zlab.bu.edu/PWEA/index.php. Access Date: 13 Jul 2014.

Ibrahim M, Jassim S, Cawthorne MA, Langlands K. A matlab tool for pathway enrichment using a topology-based pathway regulation score. BMC Bioinforma. 2014;15:358. doi: 10.1186/s12859-014-0358-2. PubMed DOI PMC

Advaita C. iPathwayGuide. http://www.advaitabio.com/products.html. Access Date: 13 Jul 2013.

Massa M, Chiogna M, Romualdi C. Gene set analysis exploiting the topology of a pathway. BMC Syst Biol. 2010;4(1):121. PubMed PMC

Martini P, Sales G, Massa MS, Chiogna M, Romualdi C. Along signal paths: an empirical gene set approach exploiting pathway topology. Nucleic Acids Res. 2013;41(1):e19. doi: 10.1093/nar/gks866. PubMed DOI PMC

Jacob L, Neuvial P, Dudoit S. Gains in Power from Structured Two-Sample Tests of Means on Graphs: Annals of Applied Statistics; 2012. 6:pp. 561–600.

Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, Kim J-s, et al. A novel signaling pathway impact analysis. Bioinforma. 2009;25(1):75–82. doi: 10.1093/bioinformatics/btn577. PubMed DOI PMC

Sales G, Calura E, Cavalieri D, Romualdi C. graphite - a bioconductor package to convert pathway topology to gene network. BMC Bioinforma. 2012;13(1):20. doi: 10.1186/1471-2105-13-20. PubMed DOI PMC

Gentleman RC, Carey VJ, Bates DM. Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol. 2004;5:80. doi: 10.1186/gb-2004-5-10-r80. PubMed DOI PMC

Niskanen S, Östergård PRJ. Cliquer user’s guide, version 1.0. Technical report. Espoo, Finland: Communications Laboratory, Helsinki University of Technology; 2003.

Bron C, Kerbosch J. Algorithm 457: Finding all cliques of an undirected graph. Commun ACM. 1973;16(9):575–7. doi: 10.1145/362342.362367. DOI

Robinson M, Oshlack A. A scaling normalization method for differential expression analysis of rna-seq data. Genome Biol. 2010;11(3):25. doi: 10.1186/gb-2010-11-3-r25. PubMed DOI PMC

Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):106. doi: 10.1186/gb-2010-11-10-r106. PubMed DOI PMC

Luo W, Friedman M, Shedden K, Hankenson K, Woolf P. GAGE: generally applicable gene set enrichment for pathway analysis. BMC Bioinforma. 2009;10(1):161. doi: 10.1186/1471-2105-10-161. PubMed DOI PMC

Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C, et al. A systems biology approach for pathway level analysis. Genome Res. 2007;17(10):000. doi: 10.1101/gr.6202607. PubMed DOI PMC

Al-Haj Ibrahim M, Jassim S, Cawthorne MA, Langlands K. A topology-based score for pathway enrichment. J Comput Biol. 2012;19(5):563–573. doi: 10.1089/cmb.2011.0182. PubMed DOI

Hung JH, Whitfield T, Yang TH, Hu Z, Weng Z, DeLisi C. Identification of functional modules that correlate with phenotypic difference: the influence of network topology. Genome Biol. 2010;11(2):23. doi: 10.1186/gb-2010-11-2-r23. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A critical comparison of topology-based pathway analysis methods

. 2018 ; 13 (1) : e0191154. [epub] 20180125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...