ToPASeq: an R package for topology-based pathway analysis of microarray and RNA-Seq data
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26514335
PubMed Central
PMC4625615
DOI
10.1186/s12859-015-0763-1
PII: 10.1186/s12859-015-0763-1
Knihovny.cz E-zdroje
- MeSH
- genové regulační sítě * MeSH
- lidé MeSH
- počítačová grafika * MeSH
- RNA genetika MeSH
- sekvenční analýza RNA metody MeSH
- signální transdukce * MeSH
- software * MeSH
- stanovení celkové genové exprese metody MeSH
- vysoce účinné nukleotidové sekvenování metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA MeSH
BACKGROUND: Pathway analysis methods, in which differentially expressed genes are mapped to databases of reference pathways and relative enrichment is assessed, help investigators to propose biologically relevant hypotheses. The last generation of pathway analysis methods takes into account the topological structure of a pathway, which helps to increase both specificity and sensitivity of the findings. Simultaneously, the RNA-Seq technology is gaining popularity and becomes widely used for gene expression profiling. Unfortunately, majority of topological pathway analysis methods remains without implementation and if an implementation exists, it is limited in various factors. RESULTS: We developed a new R/Bioconductor package ToPASeq offering uniform interface to seven distinct topology-based pathway analysis methods, of which three we implemented de-novo and four were adjusted from existing implementations. Apart this, ToPASeq offers a set of tailored visualization functions and functions for importing and manipulating pathways and their topologies, facilitating the application of the methods on different species. The package can be used to compare the differential expression of pathways between two conditions on both gene expression microarray and RNA-Seq data. The package is written in R and is available from Bioconductor 3.2 using AGPL-3 license. CONCLUSION: ToPASeq is a novel package that offers seven distinct methods for topology-based pathway analysis, which are easily applicable on microarray as well as RNA-Seq data, both in human and other species. At the same time, it provides specific tools for visualization of the results.
Central European Institute of Technology Brno Czech Republic
RECETOX Faculty of Science Masarykova Univerzita Brno Czech Republic
Zobrazit více v PubMed
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci. 2005;102(43):15545–15550. doi: 10.1073/pnas.0506580102. PubMed DOI PMC
Mitrea C, Taghavi Z, Bokanizad B, Hanoudi S, Tagett R, Donato M, et al. Methods and approaches in the topology-based analysis of biological pathways. Front Physiol. 2013;4(278):1–22. PubMed PMC
Goeman JJ, Bühlmann P. Analyzing gene expression data in terms of gene sets: methodological issues. Bioinforma. 2007;23(8):980–7. doi: 10.1093/bioinformatics/btm051. PubMed DOI
Dillies MA, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N, et al. A comprehensive evaluation of normalization methods for illumina high-throughput rna sequencing data analysis. Brief Bioinform. 2013;14(6):671–83. doi: 10.1093/bib/bbs046. PubMed DOI
Soneson C, Delorenzi M. A comparison of methods for differential expression analysis of rna-seq data. BMC Bioinforma. 2013;14(1):91. doi: 10.1186/1471-2105-14-91. PubMed DOI PMC
Rapaport F, Khanin R, Liang Y, Pirun M, Krek A, Zumbo P, et al. Comprehensive evaluation of differential gene expression analysis methods for rna-seq data. Genome Biol. 2013;14(9):95. doi: 10.1186/gb-2013-14-9-r95. PubMed DOI PMC
Seyednasrollah F, Laiho A, Elo LL. Comparison of software packages for detecting differential expression in rna-seq studies. Brief Bioinforma. 2015;16(1):59–70. doi: 10.1093/bib/bbt086. PubMed DOI PMC
Gao S, Wang X. Tappa: topological analysis of pathway phenotype association. Bioinforma. 2007;23(22):3100–102. doi: 10.1093/bioinformatics/btm460. PubMed DOI PMC
Thomson R. MetaCoreTM Data-mining and Pathway Analysis. http://thomsonreuters.com/metacore/. Access Date: 13 Jul 2013.
Tarca AL, Kathri P, Draghici S. SPIA: Signaling Pathway Impact Analysis (SPIA) Using Combined Evidence of Pathway Over-representation and Unusual Signaling Perturbations, R package version 2.16.0. 2013. http://bioinformatics.oxfordjournals.org/cgi/reprint/btn577v1. Access Date: 10 Sep 2013.
Hung JH. PWEA Pathway Enrichment Analysis. http://zlab.bu.edu/PWEA/index.php. Access Date: 13 Jul 2014.
Ibrahim M, Jassim S, Cawthorne MA, Langlands K. A matlab tool for pathway enrichment using a topology-based pathway regulation score. BMC Bioinforma. 2014;15:358. doi: 10.1186/s12859-014-0358-2. PubMed DOI PMC
Advaita C. iPathwayGuide. http://www.advaitabio.com/products.html. Access Date: 13 Jul 2013.
Massa M, Chiogna M, Romualdi C. Gene set analysis exploiting the topology of a pathway. BMC Syst Biol. 2010;4(1):121. PubMed PMC
Martini P, Sales G, Massa MS, Chiogna M, Romualdi C. Along signal paths: an empirical gene set approach exploiting pathway topology. Nucleic Acids Res. 2013;41(1):e19. doi: 10.1093/nar/gks866. PubMed DOI PMC
Jacob L, Neuvial P, Dudoit S. Gains in Power from Structured Two-Sample Tests of Means on Graphs: Annals of Applied Statistics; 2012. 6:pp. 561–600.
Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, Kim J-s, et al. A novel signaling pathway impact analysis. Bioinforma. 2009;25(1):75–82. doi: 10.1093/bioinformatics/btn577. PubMed DOI PMC
Sales G, Calura E, Cavalieri D, Romualdi C. graphite - a bioconductor package to convert pathway topology to gene network. BMC Bioinforma. 2012;13(1):20. doi: 10.1186/1471-2105-13-20. PubMed DOI PMC
Gentleman RC, Carey VJ, Bates DM. Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol. 2004;5:80. doi: 10.1186/gb-2004-5-10-r80. PubMed DOI PMC
Niskanen S, Östergård PRJ. Cliquer user’s guide, version 1.0. Technical report. Espoo, Finland: Communications Laboratory, Helsinki University of Technology; 2003.
Bron C, Kerbosch J. Algorithm 457: Finding all cliques of an undirected graph. Commun ACM. 1973;16(9):575–7. doi: 10.1145/362342.362367. DOI
Robinson M, Oshlack A. A scaling normalization method for differential expression analysis of rna-seq data. Genome Biol. 2010;11(3):25. doi: 10.1186/gb-2010-11-3-r25. PubMed DOI PMC
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):106. doi: 10.1186/gb-2010-11-10-r106. PubMed DOI PMC
Luo W, Friedman M, Shedden K, Hankenson K, Woolf P. GAGE: generally applicable gene set enrichment for pathway analysis. BMC Bioinforma. 2009;10(1):161. doi: 10.1186/1471-2105-10-161. PubMed DOI PMC
Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C, et al. A systems biology approach for pathway level analysis. Genome Res. 2007;17(10):000. doi: 10.1101/gr.6202607. PubMed DOI PMC
Al-Haj Ibrahim M, Jassim S, Cawthorne MA, Langlands K. A topology-based score for pathway enrichment. J Comput Biol. 2012;19(5):563–573. doi: 10.1089/cmb.2011.0182. PubMed DOI
Hung JH, Whitfield T, Yang TH, Hu Z, Weng Z, DeLisi C. Identification of functional modules that correlate with phenotypic difference: the influence of network topology. Genome Biol. 2010;11(2):23. doi: 10.1186/gb-2010-11-2-r23. PubMed DOI PMC