Endosidin2 targets conserved exocyst complex subunit EXO70 to inhibit exocytosis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
R01 GM111128
NIGMS NIH HHS - United States
PubMed
26607451
PubMed Central
PMC4711834
DOI
10.1073/pnas.1521248112
PII: 1521248112
Knihovny.cz E-zdroje
- Klíčová slova
- EXO70, endosidin2, exocyst, exocytosis,
- MeSH
- Arabidopsis metabolismus MeSH
- buněčná membrána metabolismus MeSH
- endozomy metabolismus MeSH
- exocytóza * MeSH
- konzervovaná sekvence MeSH
- lidé MeSH
- limoniny metabolismus MeSH
- molekulární evoluce MeSH
- proteiny huseníčku chemie genetika metabolismus MeSH
- sekundární struktura proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- endosidin 2 MeSH Prohlížeč
- EXO70A1 protein, Arabidopsis MeSH Prohlížeč
- limoniny MeSH
- proteiny huseníčku MeSH
The exocyst complex regulates the last steps of exocytosis, which is essential to organisms across kingdoms. In humans, its dysfunction is correlated with several significant diseases, such as diabetes and cancer progression. Investigation of the dynamic regulation of the evolutionarily conserved exocyst-related processes using mutants in genetically tractable organisms such as Arabidopsis thaliana is limited by the lethality or the severity of phenotypes. We discovered that the small molecule Endosidin2 (ES2) binds to the EXO70 (exocyst component of 70 kDa) subunit of the exocyst complex, resulting in inhibition of exocytosis and endosomal recycling in both plant and human cells and enhancement of plant vacuolar trafficking. An EXO70 protein with a C-terminal truncation results in dominant ES2 resistance, uncovering possible distinct regulatory roles for the N terminus of the protein. This study not only provides a valuable tool in studying exocytosis regulation but also offers a potentially new target for drugs aimed at addressing human disease.
Department of Biochemistry University of California Riverside CA 92521;
Department of Bioengineering University of California Riverside CA 92521;
Department of Biology University of Pennsylvania Philadelphia PA 19104;
Department of Chemistry University of California Riverside CA 92521;
Institute of Experimental Botany Academy of Sciences 165 02 Prague 6 Czech Republic;
Zobrazit více v PubMed
Novick P, Field C, Schekman R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell. 1980;21(1):205–215. PubMed
Zhao Y, et al. Exo70 generates membrane curvature for morphogenesis and cell migration. Dev Cell. 2013;26(3):266–278. PubMed PMC
Fujita A, et al. GTP hydrolysis of TC10 promotes neurite outgrowth through exocytic fusion of Rab11- and L1-containing vesicles by releasing exocyst component Exo70. PLoS One. 2013;8(11):e79689. PubMed PMC
Dupraz S, et al. The TC10-Exo70 complex is essential for membrane expansion and axonal specification in developing neurons. J Neurosci. 2009;29(42):13292–13301. PubMed PMC
Zuo X, et al. Exo70 interacts with the Arp2/3 complex and regulates cell migration. Nat Cell Biol. 2006;8(12):1383–1388. PubMed
Xiong X, et al. An association between type Iγ PI4P 5-kinase and Exo70 directs E-cadherin clustering and epithelial polarization. Mol Biol Cell. 2012;23(1):87–98. PubMed PMC
Synek L, et al. AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. Plant J. 2006;48(1):54–72. PubMed PMC
Kulich I, et al. Arabidopsis exocyst subunits SEC8 and EXO70A1 and exocyst interactor ROH1 are involved in the localized deposition of seed coat pectin. New Phytol. 2010;188(2):615–625. PubMed
Fendrych M, et al. The Arabidopsis exocyst complex is involved in cytokinesis and cell plate maturation. Plant Cell. 2010;22(9):3053–3065. PubMed PMC
Pecenková T, et al. The role for the exocyst complex subunits Exo70B2 and Exo70H1 in the plant-pathogen interaction. J Exp Bot. 2011;62(6):2107–2116. PubMed PMC
Kulich I, et al. Arabidopsis exocyst subcomplex containing subunit EXO70B1 is involved in autophagy-related transport to the vacuole. Traffic. 2013;14(11):1155–1165. PubMed
Zárský V, Kulich I, Fendrych M, Pečenková T. Exocyst complexes multiple functions in plant cells secretory pathways. Curr Opin Plant Biol. 2013;16(6):726–733. PubMed
Inoue M, Chang L, Hwang J, Chiang SH, Saltiel AR. The exocyst complex is required for targeting of Glut4 to the plasma membrane by insulin. Nature. 2003;422(6932):629–633. PubMed
Lu H, et al. Exo70 isoform switching upon epithelial-mesenchymal transition mediates cancer cell invasion. Dev Cell. 2013;27(5):560–573. PubMed PMC
Liu J, Yue P, Artym VV, Mueller SC, Guo W. The role of the exocyst in matrix metalloproteinase secretion and actin dynamics during tumor cell invadopodia formation. Mol Biol Cell. 2009;20(16):3763–3771. PubMed PMC
Drakakaki G, et al. Clusters of bioactive compounds target dynamic endomembrane networks in vivo. Proc Natl Acad Sci USA. 2011;108(43):17850–17855. PubMed PMC
Robert S, et al. Endosidin1 defines a compartment involved in endocytosis of the brassinosteroid receptor BRI1 and the auxin transporters PIN2 and AUX1. Proc Natl Acad Sci USA. 2008;105(24):8464–8469. PubMed PMC
Geldner N, et al. The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell. 2003;112(2):219–230. PubMed
Jaillais Y, Fobis-Loisy I, Miège C, Rollin C, Gaude T. AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis. Nature. 2006;443(7107):106–109. PubMed
Kleine-Vehn J, et al. Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. Proc Natl Acad Sci USA. 2008;105(46):17812–17817. PubMed PMC
Robert S, et al. ABP1 mediates auxin inhibition of clathrin-dependent endocytosis in Arabidopsis. Cell. 2010;143(1):111–121. PubMed PMC
Tamura K, et al. Why green fluorescent fusion proteins have not been observed in the vacuoles of higher plants. Plant J. 2003;35(4):545–555. PubMed
Drdová EJ, et al. The exocyst complex contributes to PIN auxin efflux carrier recycling and polar auxin transport in Arabidopsis. Plant J. 2013;73(5):709–719. PubMed
Chong YT, et al. Characterization of the Arabidopsis thaliana exocyst complex gene families by phylogenetic, expression profiling, and subcellular localization studies. New Phytol. 2010;185(2):401–419. PubMed
Li S, et al. Expression and functional analyses of EXO70 genes in Arabidopsis implicate their roles in regulating cell type-specific exocytosis. Plant Physiol. 2010;154(4):1819–1830. PubMed PMC
Hála M, et al. An exocyst complex functions in plant cell growth in Arabidopsis and tobacco. Plant Cell. 2008;20(5):1330–1345. PubMed PMC
Lomenick B, et al. Target identification using drug affinity responsive target stability (DARTS) Proc Natl Acad Sci USA. 2009;106(51):21984–21989. PubMed PMC
Lepre CA, Moore JM, Peng JW. Theory and applications of NMR-based screening in pharmaceutical research. Chem Rev. 2004;104(8):3641–3676. PubMed
Duhr S, Braun D. Why molecules move along a temperature gradient. Proc Natl Acad Sci USA. 2006;103(52):19678–19682. PubMed PMC
Seidel SA, et al. Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions. Methods. 2013;59(3):301–315. PubMed PMC
Wienken CJ, Baaske P, Rothbauer U, Braun D, Duhr S. Protein-binding assays in biological liquids using microscale thermophoresis. Nat Commun. 2010;1:100. PubMed
Rybak K, et al. Plant cytokinesis is orchestrated by the sequential action of the TRAPPII and exocyst tethering complexes. Dev Cell. 2014;29(5):607–620. PubMed
Wen TJ, Hochholdinger F, Sauer M, Bruce W, Schnable PS. The roothairless1 gene of maize encodes a homolog of sec3, which is involved in polar exocytosis. Plant Physiol. 2005;138(3):1637–1643. PubMed PMC
Zárský V, Cvrcková F, Potocký M, Hála M. Exocytosis and cell polarity in plants - exocyst and recycling domains. New Phytol. 2009;183(2):255–272. PubMed
Dong G, Hutagalung AH, Fu C, Novick P, Reinisch KM. The structures of exocyst subunit Exo70p and the Exo84p C-terminal domains reveal a common motif. Nat Struct Mol Biol. 2005;12(12):1094–1100. PubMed
Hamburger ZA, Hamburger AE, West AP, Jr, Weis WI. Crystal structure of the S.cerevisiae exocyst component Exo70p. J Mol Biol. 2006;356(1):9–21. PubMed
Moore BA, Robinson HH, Xu Z. The crystal structure of mouse Exo70 reveals unique features of the mammalian exocyst. J Mol Biol. 2007;371(2):410–421. PubMed PMC
Morris GM, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem. 1998;19(14):1639–1662.
Lomenick B, Jung G, Wohlschlegel JA, Huang J. Target identification using drug affinity responsive target stability (DARTS) Curr Protoc Chem Biol. 2011;3(4):163–180. PubMed PMC
Viegas A, Manso J, Nobrega FL, Cabrita EJ. Saturation-transfer difference (STD) NMR: A simple and fast method for ligand screening and characterization of protein binding. J Chem Educ. 2011;88(7):990–994.
Fendrych M, et al. Visualization of the exocyst complex dynamics at the plasma membrane of Arabidopsis thaliana. Mol Biol Cell. 2013;24(4):510–520. PubMed PMC
Geldner N, et al. Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J. 2009;59(1):169–178. PubMed PMC
Ueda T, Uemura T, Sato MH, Nakano A. Functional differentiation of endosomes in Arabidopsis cells. Plant J. 2004;40(5):783–789. PubMed
Xu J, Scheres B. Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR 1 function in epidermal cell polarity. Plant Cell. 2005;17(2):525–536. PubMed PMC
Wisniewska J, et al. Polar PIN localization directs auxin flow in plants. Science. 2006;312(5775):883. PubMed
Fu Y, Xu T, Zhu L, Wen M, Yang Z. A ROP GTPase signaling pathway controls cortical microtubule ordering and cell expansion in Arabidopsis. Curr Biol. 2009;19(21):1827–1832. PubMed PMC
Russinova E, et al. Heterodimerization and endocytosis of Arabidopsis brassinosteroid receptors BRI1 and AtSERK3 (BAK1) Plant Cell. 2004;16(12):3216–3229. PubMed PMC
Matsushima R, Kondo M, Nishimura M, Hara-Nishimura I. A novel ER-derived compartment, the ER body, selectively accumulates a beta-glucosidase with an ER-retention signal in Arabidopsis. Plant J. 2003;33(3):493–502. PubMed
Cho M, Lee SH, Cho HT. P-glycoprotein4 displays auxin efflux transporter-like action in Arabidopsis root hair cells and tobacco cells. Plant Cell. 2007;19(12):3930–3943. PubMed PMC
Cutler SR, Ehrhardt DW, Griffitts JS, Somerville CR. Random GFP:cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc Natl Acad Sci USA. 2000;97(7):3718–3723. PubMed PMC
Zhang C, Kotchoni SO, Samuels AL, Szymanski DB. SPIKE1 signals originate from and assemble specialized domains of the endoplasmic reticulum. Curr Biol. 2010;20(23):2144–2149. PubMed
Surpin M, et al. The power of chemical genomics to study the link between endomembrane system components and the gravitropic response. Proc Natl Acad Sci USA. 2005;102(13):4902–4907. PubMed PMC
Lewis DR, Miller ND, Splitt BL, Wu G, Spalding EP. Separating the roles of acropetal and basipetal auxin transport on gravitropism with mutations in two Arabidopsis multidrug resistance-like ABC transporter genes. Plant Cell. 2007;19(6):1838–1850. PubMed PMC
Carter C, et al. The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell. 2004;16(12):3285–3303. PubMed PMC
Sohn EJ, et al. The shoot meristem identity gene TFL1 is involved in flower development and trafficking to the protein storage vacuole. Proc Natl Acad Sci USA. 2007;104(47):18801–18806. PubMed PMC
Sorenson R, Bailey-Serres J. Selective mRNA sequestration by OLIGOURIDYLATE-BINDING PROTEIN 1 contributes to translational control during hypoxia in Arabidopsis. Proc Natl Acad Sci USA. 2014;111(6):2373–2378. PubMed PMC
Emsley P, Cowtan K. Coot: Model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60(Pt 12 Pt 1):2126–2132. PubMed
Adams PD, et al. PHENIX: Building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr. 2002;58(Pt 11):1948–1954. PubMed
Pedretti A, Villa L, Vistoli G. VEGA: An open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. J Comput Aided Mol Des. 2004;18(3):167–173. PubMed
Gasteiger J, Marsili M. Iterative partial equalization of orbital electronegativity: A rapid access to atomic charges. Tetrahedron. 1980;36(22):3219–3228.
Morris GM, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–2791. PubMed PMC
Plasma membrane phospholipid signature recruits the plant exocyst complex via the EXO70A1 subunit
EXO70A2 Is Critical for Exocyst Complex Function in Pollen Development
EXO70C2 Is a Key Regulatory Factor for Optimal Tip Growth of Pollen
Exocyst SEC3 and Phosphoinositides Define Sites of Exocytosis in Pollen Tube Initiation and Growth
PDB
4RL5