Genomic and Functional Characterization of the Unusual pLOCK 0919 Plasmid Harboring the spaCBA Pili Cluster in Lactobacillus casei LOCK 0919
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26637469
PubMed Central
PMC4758243
DOI
10.1093/gbe/evv247
PII: evv247
Knihovny.cz E-zdroje
- Klíčová slova
- Lactobacillus, adhesion, in silico analyses, plasmid, probiotic properties, spaCBA pilus cluster,
- MeSH
- aminoacyltransferasy genetika MeSH
- bakteriální fimbrie genetika MeSH
- bakteriální proteiny genetika MeSH
- cysteinové endopeptidasy genetika MeSH
- genom bakteriální * MeSH
- Lactobacillus casei genetika MeSH
- membránové proteiny genetika MeSH
- molekulární sekvence - údaje MeSH
- multigenová rodina * MeSH
- plazmidy genetika MeSH
- sekvence aminokyselin MeSH
- transposasy genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminoacyltransferasy MeSH
- bakteriální proteiny MeSH
- cysteinové endopeptidasy MeSH
- membránové proteiny MeSH
- sortase C MeSH Prohlížeč
- SpaC protein, bacteria MeSH Prohlížeč
- transposasy MeSH
Here, we report the extensive bioinformatic and functional analyses of the unusual pLOCK 0919, a plasmid originating from the probiotic Lactobacillus casei LOCK 0919 strain. This plasmid is atypical because it harbors the spaCBA-srtC gene cluster encoding SpaCBA pili. We show that all other spaCBA-srtC sequences of the Lactobacillus genus that have been previously described and deposited in GenBank are present in the chromosomal DNA. Another important observation for pLOCK 0919 is that the spaCBA-srtC gene cluster and its surrounding genes are highly similar to the respective DNA region that is present in the most well-known and active SpaCBA pili producer, the probiotic Lactobacillus rhamnosus GG strain. Our results demonstrate that the spaCBA-srtC clusters of pLOCK 0919 and L. rhamnosus GG are genealogically similar, located in DNA regions that are rich in transposase genes and are poorly conserved among the publicly available sequences of Lactobacillus sp. In contrast to chromosomally localized pilus gene clusters from L. casei and Lactobacillus paracasei, the plasmidic spaC of L. casei LOCK 0919 is expressed and undergoes a slight glucose-induced repression. Moreover, results of series of in vitro tests demonstrate that L. casei LOCK 0919 has an adhesion potential, which is largely determined by the presence of the pLOCK 0919 plasmid. In particular, the plasmid occurrence positively influenced the hydrophobicity and aggregation abilities of L. casei LOCK 0919. Moreover, in vivo studies indicate that among the three Lactobacillus strains used to colonize the gastrointestinal tract of germ-free mice, already after 2 days of colonization, L. casei LOCK 0919 became the dominant strain and persisted there for at least 48 days.
Department of Pathology The Children's Memorial Health Institute Warsaw Poland
Institute of Biochemistry and Biophysics Polish Academy of Sciences Warsaw Poland
Institute of Fermentation Technology and Microbiology Lodz University of Technology Lodz Poland
Laboratory of Gnotobiology Institute of Microbiology of the CAS v v i Novy Hradek Czech Republic
Zobrazit více v PubMed
Aleksandrzak-Piekarczyk T, Koryszewska-Bagińska A, Bardowski J. 2013. Genome sequence of the probiotic strain Lactobacillus rhamnosus (formerly Lactobacillus casei) LOCK900. Genome Announc. 1:e00640–13. PubMed PMC
Altschul SF, et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389–3402. PubMed PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol. 215:403–410. PubMed
Bernardeau M, Guguen M, Vernoux JP. 2006. Beneficial lactobacilli in food and feed: long-term use, biodiversity and proposals for specific and realistic safety assessments. FEMS Microbiol Rev. 30:487–513. PubMed
Browning DF, Busby SJW. 2004. The regulation of bacterial transcription initiation. Nat Rev Microbiol. 2:57–65. PubMed
Cai H, Thompson R, Budinich MF, Broadbent JR, Steele JL. 2009. Genome sequence and comparative genome analysis of Lactobacillus casei: insights into their niche-associated evolution. Genome Biol Evol. 1:239–257. PubMed PMC
Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 17:540–552. PubMed
Chevenet F, Brun C, Bañuls A-L, Jacq B, Christen R. 2006. TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics 7:439–448. PubMed PMC
Corpet F. 1988. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16:10881–10890. PubMed PMC
Cui Y, et al. 2015. Plasmids from food lactic acid bacteria: diversity, similarity, and new developments. Int J Mol Sci. 16:13172–13202. PubMed PMC
Cukrowska B, et al. 2009. Probiotic Lactobacillus strains: in vitro and in vivo studies. Folia Microbiol. 54:533–537. PubMed
Cukrowska B, et al. 2010. Impact of heat-inactivated Lactobacillus casei and Lactobacillus paracasei strains on cytokine responses in whole blood cell cultures of children with atopic dermatitis. Folia Microbiol. 55:277–280. PubMed
Dereeper A, et al. 2008. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 36:W465–W469. PubMed PMC
Douillard FP, Ribbera A, Järvinen HM, et al. 2013. Comparative genomic and functional analysis of Lactobacillus casei and Lactobacillus rhamnosus strains marketed as probiotics. Appl Environ Microbiol. 79:1923–1933. PubMed PMC
Douillard FP, Ribbera A, Kant R, et al. 2013. Comparative genomic and functional analysis of 100 Lactobacillus rhamnosus strains and their comparison with strain GG. PLoS Genet. 9:e1003683. PubMed PMC
Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32:1792–1797. PubMed PMC
FAO-WHO. 2006. Probiotics in food. Health and nutritional properties and guidelines for evaluation. FAO Food and Nutritional Paper No. 85. doi: ISBN: 92-5-105513-0.
Felis GE, Dellaglio F. 2007. Taxonomy of lactobacilli and bifidobacteria. Curr Issues Intest Microbiol. 8:44–61. PubMed
Frickey T, Lupas A. 2004. CLANS: a Java application for visualizing protein families based on pairwise similarity. Bioinformatics 20:3702–3704. PubMed
Guindon S, et al. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 59:307–321. PubMed
Hildebrand A, Remmert M, Biegert A, Söding J. 2009. Fast and accurate automatic structure prediction with HHpred. Proteins 77:128–132. PubMed
Hueck CJ, Hillen W. 1995. Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the Gram-positive bacteria? Mol Mikrobiol. 15:395–401. PubMed
Jankowska A, Laubitz D, Antushevich H, Zabielski R, Grzesiuk E. 2008. Competition of Lactobacillus paracasei with Salmonella enterica for adhesion to Caco-2 cells. J Biomed Biotechnol. 2008:357964. PubMed PMC
Kankainen M, et al. 2009. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proc Natl Acad Sci U S A. 106:17193–17198. PubMed PMC
Kant R, Blom J, Palva A, Siezen RJ, de Vos WM. 2011. Comparative genomics of Lactobacillus. Microb Biotechnol. 4:323–332. PubMed PMC
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30:772–780. PubMed PMC
Koryszewska-Bagińska A, Aleksandrzak-Piekarczyk T, Bardowski J. 2013. Complete genome sequence of the probiotic strain Lactobacillus casei (formerly Lactobacillus paracasei) LOCK919. Genome Announc. 1:e00758–13. PubMed PMC
Koryszewska-Bagińska A, Bardowski J, Aleksandrzak-Piekarczyk T. 2014. Genome sequence of the probiotic strain Lactobacillus rhamnosus (formerly Lactobacillus casei) LOCK908. Genome Announc. 2:e00120–14. PubMed PMC
Kos B, et al. 2003. Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J Appl Microbiol. 94:981–987. PubMed
Kozakova H, et al. 2015. Colonization of germ-free mice with a mixture of three lactobacillus strains enhances the integrity of gut mucosa and ameliorates allergic sensitization. Cell Mol Immunol. Available from: http://dx.doi.org/10.1038/cmi.2015.09. PubMed DOI PMC
Krzywinski M, et al. 2009. Circos: an information aesthetic for comparative genomics. Genome Res. 19:1639–1645. PubMed PMC
Lebeer S, Vanderleyden J, De Keersmaecker SCJ. 2008. Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev. 72:728–764. PubMed PMC
Lim S-M, Ahn D-H. 2012. Factors affecting adhesion of lactic acid bacteria to Caco-2 cells and inhibitory effect on infection of Salmonella typhimurium. J Microbiol Biotechnol. 22:1731–1739. PubMed
Liu C, Zhang Z-Y, Dong K, Guo X-K. 2010. Adhesion and immunomodulatory effects of Bifidobacterium lactis HN019 on intestinal epithelial cells INT-407. World J Gastroenterol. 16:2283–2290. PubMed PMC
Ludwig H, Rebhan N, Blencke H-M, Merzbacher M, Stülke J. 2002. Control of the glycolytic gapA operon by the catabolite control protein A in Bacillus subtilis: a novel mechanism of CcpA-mediated regulation. Mol Microbiol. 45:543–553. PubMed
Lukić J, et al. 2012. Different roles for lactococcal aggregation factor and mucin binding protein in adhesion to gastrointestinal mucosa. Appl Environ Microbiol. 78:7993–8000. PubMed PMC
Mack DR, Ahrne S, Hyde L, Wei S, Hollingsworth MA. 2003. Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut 52:827–833. PubMed PMC
Mahillon J, Chandler M. 1998. Insertion sequences. Microbiol Mol Biol Rev. 62:725–774. PubMed PMC
Miwa Y, Nakata A, Ogiwara A, Yamamoto M, Fujita Y. 2000. Evaluation and characterization of catabolite-responsive elements (cre) of Bacillus subtilis. Nucleic Acids Res. 28:1206–1210. PubMed PMC
Permina EA, Mironov AA, Gelfand MS. 2002. Damage-repair error-prone polymerases of eubacteria: association with mobile genome elements. Gene 293:133–140. PubMed
Poirel L, Decousser J-W, Nordmann P. 2003. Insertion sequence ISEcp1B is involved in expression and mobilization of a blaCTX-M β-lactamase gene. Antimicrob Agents Chemother. 47:2938–2945. PubMed PMC
Ren D, et al. 2012. Inhibition of Staphylococcus aureus adherence to Caco-2 cells by lactobacilli and cell surface properties that influence attachment. Anaerobe 18:508–515. PubMed
Reunanen J, von Ossowski I, Hendrickx APA, Palva A, de Vos WM. 2012. Characterization of the SpaCBA pilus fibers in the probiotic Lactobacillus rhamnosus GG. Appl Environ Microbiol. 78:2337–2344. PubMed PMC
Reynolds AE, Mahadevan S, LeGrice SFJ, Wright A. 1986. Enhancement of bacterial gene expression by insertion elements or by mutation in a CAP-cAMP binding site. J Mol Biol. 191:85–95. PubMed
Ruiz-Barba JL, Piard JC, Jiménez-Díaz R. 1991. Plasmid profiles and curing of plasmids in Lactobacillus plantarum strains isolated from green olive fermentations. J Appl Bacteriol. 71:417–421. PubMed
Saxelin M, Tynkkynen S, Mattila-Sandholm T, de Vos WM. 2005. Probiotic and other functional microbes: from markets to mechanisms. Curr Opin Biotechnol. 16:204–211. PubMed
Segers M, Lebeer S. 2014. Towards a better understanding of Lactobacillus rhamnosus GG- host interactions. Microb Cell Fact. 13:S7. PubMed PMC
Siguier P, Filée J, Chandler M. 2006. Insertion sequences in prokaryotic genomes. Curr Opin Microbiol. 9:526–531. PubMed
Sullivan MJ, Petty NK, Beatson SA. 2011. Easyfig: a genome comparison visualizer. Bioinformatics 27:1009–1010. PubMed PMC
Tanaka T, Ogura M. 1998. A novel Bacillus natto plasmid pLS32 capable of replication in Bacillus subtilis. FEBS Lett. 422:243–246. PubMed
Vesterlund S, Karp M, Salminen S, Ouwehand AC. 2006. Staphylococcus aureus adheres to human intestinal mucus but can be displaced by certain lactic acid bacteria. Microbiology 152:1819–1826. PubMed
Vesterlund S, Paltta J, Karp M, Ouwehand AC. 2005. Measurement of bacterial adhesion—in vitro evaluation of different methods. J Microbiol Methods. 60:225–233. PubMed
von Ossowski I, et al. 2010. Mucosal adhesion properties of the probiotic Lactobacillus rhamnosus GG SpaCBA and SpaFED pilin subunits. Appl Environ Microbiol. 76:2049–2057. PubMed PMC
Wang T-T, Lee BH. 1997. Plasmids in Lactobacillus. Crit Rev Biotechnol. 17:227–272. PubMed
Zeraik AE, Nitschke M. 2012. Influence of growth media and temperature on bacterial adhesion to polystyrene surfaces. Braz Arch Biol Technol. 55:569–576