• This record comes from PubMed

Nature's Palette: Characterization of Shared Pigments in Colorful Avian and Mollusk Shells

. 2015 ; 10 (12) : e0143545. [epub] 20151209

Language English Country United States Media electronic-ecollection

Document type Journal Article, Research Support, U.S. Gov't, Non-P.H.S., Research Support, Non-U.S. Gov't

Pigment-based coloration is a common trait found in a variety of organisms across the tree of life. For example, calcareous avian eggs are natural structures that vary greatly in color, yet just a handful of tetrapyrrole pigment compounds are responsible for generating this myriad of colors. To fully understand the diversity and constraints shaping nature's palette, it is imperative to characterize the similarities and differences in the types of compounds involved in color production across diverse lineages. Pigment composition was investigated in eggshells of eleven paleognath bird taxa, covering several extinct and extant lineages, and shells of four extant species of mollusks. Birds and mollusks are two distantly related, calcareous shell-building groups, thus characterization of pigments in their calcareous structures would provide insights to whether similar compounds are found in different phyla (Chordata and Mollusca). An ethylenediaminetetraacetic acid (EDTA) extraction protocol was used to analyze the presence and concentration of biliverdin and protoporphyrin, two known and ubiquitous tetrapyrrole avian eggshell pigments, in all avian and molluscan samples. Biliverdin was solely detected in birds, including the colorful eggshells of four tinamou species. In contrast, protoporphyrin was detected in both the eggshells of several avian species and in the shells of all mollusks. These findings support previous hypotheses about the ubiquitous deposition of tetrapyrroles in the eggshells of various bird lineages and provide evidence for its presence also across distantly related animal taxa.

See more in PubMed

Storfer A, Cross J, Rush V, Caruso J. Adaptive coloration and gene flow as a constraint to local adaptation in the streamside salamander, Ambystoma barbouri. Evolution (N Y). 1999;53: 889–898. 10.2307/2640729 PubMed DOI

Hoekstra HE. Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity (Edinb). 2006/07/11 ed. 2006;97: 222–234. 10.1038/sj.hdy.6800861 PubMed DOI

Caro T. The adaptive significance of coloration in mammals. Bioscience. 2005;55: 125–136. 10.1641/0006-3568(2005)055[0125:Tasoci]2.0.Co;2 DOI

Hubbard JK, Uy JA, Hauber ME, Hoekstra HE, Safran RJ. Vertebrate pigmentation: from underlying genes to adaptive function. Trends Genet. 2010/04/13 ed. 2010;26: 231–239. 10.1016/j.tig.2010.02.002 PubMed DOI

Lukyanov KA, Fradkov AF, Gurskaya NG, Matz M V, Labas YA, Savitsky AP, et al. Natural animal coloration can Be determined by a nonfluorescent green fluorescent protein homolog. J Biol Chem. 2000/06/15 ed. 2000;275: 25879–25882. 10.1074/jbc.C000338200 PubMed DOI

Shawkey MD, Hauber ME, Estep LK, Hill GE. Evolutionary transitions and mechanisms of matte and iridescent plumage coloration in grackles and allies (Icteridae). J R Soc Interface. 2006/10/04 ed. 2006;3: 777–786. 10.1098/rsif.2006.0131 PubMed DOI PMC

Mathger LM, Denton EJ, Marshall NJ, Hanlon RT. Mechanisms and behavioural functions of structural coloration in cephalopods. J R Soc Interface. 2009;6: S149–S163. 10.1098/rsif.2008.0366.focus PubMed DOI PMC

Igic B, Fecheyr-Lippens D, Xiao M, Chan A, Hanley D, Brennan PRL, et al. A nanostructural basis for gloss of avian eggshells. J R Soc Interface. 2014;12 Available: http://rsif.royalsocietypublishing.org/content/12/103/20141210.abstract PubMed PMC

Shimomura O. Bioluminescence: Chemical Principles and Methods. World Scientific; 2006. Available: http://books.google.com/books?id=DNrTfH5PcWoC

Stoddard MC, Prum RO. How colorful are birds? Evolution of the avian plumage color gamut. Behav Ecol. 2011;22: 1042–1052. 10.1093/beheco/arr088 DOI

Manceau M, Domingues VS, Linnen CR, Rosenblum EB, Hoekstra HE. Convergence in pigmentation at multiple levels: mutations, genes and function. Philos Trans R Soc Lond B Biol Sci. 2010;365: 2439–2450. 10.1098/rstb.2010.0104 PubMed DOI PMC

McGraw KJ. The antioxidant function of many animal pigments: are there consistent health benefits of sexually selected colourants? Anim Behav. 2005;69: 757–764. 10.1016/j.anbehav.2004.06.022 DOI

Hedegaard C, Bardeau JF, Chateigner D. Molluscan shell pigments: An in situ resonance Raman study. J Molluscan Stud. 2006;72: 157–162. 10.1093/mollus/eyi062 DOI

Nys Y, Gautron J, Garcia-Ruiz JM, Hincke MT. Avian eggshell mineralization: biochemical and functional characterization of matrix proteins. Comptes Rendus Palevol. 2004;3: 549–562. 10.1016/j.crpv.2004.08.002 DOI

Samiullah S, Roberts JR. The location of protoporphyrin in the eggshell of brown-shelled eggs. Poult Sci. 2013;92: 2783–2788. 10.3382/ps.2013-03051 PubMed DOI

Hanley D, Cassey P, Doucet SM. Parents, predators, parasites, and the evolution of eggshell colour in open nesting birds. Evol Ecol. 2013;27: 593–617. 10.1007/s10682-012-9619-6 DOI

Igic B, Greenwood DR, Palmer DJ, Cassey P, Gill BJ, Grim T, et al. Detecting pigments from colourful eggshells of extinct birds. Chemoecology. 2010;20: 43–48. 10.1007/s00049-009-0038-2 DOI

Cassey P, Hauber ME, Maurer G, Ewen JG. Sources of variation in reflectance spectrophotometric data: a quantitative analysis using avian eggshell colours. Methods Ecol Evol. 2012;3: 450–456. 10.1111/j.2041-210X.2011.00152.x DOI

Gorchein A, Lim CK, Cassey P. Extraction and analysis of colourful eggshell pigments using HPLC and HPLC/electrospray ionization tandem mass spectrometry. Biomed Chromatogr. 2009;23: 602–606. 10.1002/Bmc.1158 PubMed DOI

Kennedy GY, Vevers HG. A survey of avian eggshell pigments. Comp Biochem Physiol B. 1976/01/01 ed. 1976;55: 117–123. Available: http://www.ncbi.nlm.nih.gov/pubmed/947658 PubMed

Miksik I, Holan V, Deyl Z. Avian eggshell pigments and their variability. Comp Biochem Physiol B-Biochemistry Mol Biol. 1996;113: 607–612. 10.1016/0305-0491(95)02073-X DOI

Wragg D, Mwacharo JM, Alcalde JA, Wang C, Han JL, Gongora J, et al. Endogenous Retrovirus EAV-HP Linked to Blue Egg Phenotype in Mapuche Fowl. PLoS One. 2013;8 ARTN e71393 10.1371/journal.pone.0071393 PubMed DOI PMC

Fargallo JA, López-Rull I, Mikšík I, Eckhardt A, Peralta-Sánchez JM. Eggshell pigmentation has no evident effects on offspring viability in common kestrels. Evol Ecol. 2014;28: 627–637. 10.1007/s10682-014-9700-4 DOI

Wang XT, Zhao CJ, Li JY, Xu GY, Lian LS, Wu CX, et al. Comparison of the total amount of eggshell pigments in Dongxiang brown-shelled eggs and Dongxiang blue-shelled eggs. Poult Sci. 2009;88: 1735–1739. 10.3382/ps.2010-89-10-2304 PubMed DOI

Aidala Z and H ME. Avian Egg Coloration and Visual Ecology. Nat Educ Knowl. 2010;3: 53.

Kilner RM. The evolution of egg colour and patterning in birds. Biol Rev. 2006;81: 383–406. 10.1017/S1464793106007044 PubMed DOI

Wallace AR. Darwinism: An Exposition of the Theory of Natural Selection. 1923. Available: http://books.google.com/books?id=WdfOtgAACAAJ

Gosler AG, Higham JP, Reynolds SJ. Why are birds’ eggs speckled? Ecol Lett. 2005;8: 1105–1113. 10.1111/j.1461-0248.2005.00816.x DOI

Montevecchi WA. Field Experiments on Adaptive Significance of Avian Eggshell Pigmentation. Behaviour. 1976;58: 26–39. 10.1163/156853976x00226 DOI

Bertram BCR, Burger AE. Are Ostrich Struthio-Camelus Eggs the Wrong Color. Ibis (Lond 1859). 1981;123: 207–210. 10.1111/j.1474-919X.1981.tb00927.x DOI

Brennan PLR. Clutch predation in great tinamous Tinamus major and implications for the evolution of egg color. J Avian Biol. 2010;41: 419–426. 10.1111/j.1600-048X.2010.04999.x DOI

Comfort A. The Pigmentation of Molluscan Shells. Biol Rev Camb Philos Soc. 1951;26: 285–301. 10.1111/j.1469-185X.1951.tb01358.x DOI

Matsuno T. Aquatic animal carotenoids. Fish Sci. 2001;67: 771–783. 10.1046/j.1444-2906.2001.00323.x DOI

Zhang ZQ. Animal biodiversity: An update of classification and diversity in 2013. Zootaxa. 2013;3703: 5–11. Available: <Go to ISI>://000323707000001 PubMed

Jones P, Silver J. Red and blue-green bile pigments in the shell of Astraea tuber (Mollusca: Archaeogastropoda). Comp Biochem Physiol Part B Comp Biochem. 1979;63: 185–188. 10.1016/0305-0491(79)90027-0 DOI

Bannister WH, Bannister JV, Micallef H. Bile pigment in the shell of Monodonta turbinata (Mollusca: Gastropoda). Comp Biochem Physiol. 1968;27: 451–454. 10.1016/0010-406X(68)90244-2 PubMed DOI

Comfort A. Acid-Soluble Pigments of Shells .1. The Distribution of Porphyrin Fluorescence in Molluscan Shells. Biochem J. 1949;44: 111–117. Available: <Go to ISI>://A1949XW44100021 PubMed PMC

Lindberg DR, Pearse JS. Experimental Manipulation of Shell Color and Morphology of the Limpets Lottia-Asmi (Middendorff) and Lottia-Digitalis (Rathke) (Mollusca, Patellogastropoda). J Exp Mar Bio Ecol. 1990;140: 173–185. 10.1016/0022-0981(90)90125-V DOI

Stemmer K, Nehrke G. The Distribution of Polyenes in the Shell of Arctica Islandica from North Atlantic Localities: A Confocal Raman Microscopy Study. J Molluscan Stud. 2014; eyu033 10.1093/mollus/eyu033 DOI

Sokolova IM, Berger VJ. Physiological variation related to shell colour polymorphism in White Sea Littorina saxatilis. J Exp Mar Bio Ecol. 2000;245: 1–23. 10.1016/S0022-0981(99)00132-X DOI

Ermentrout B, Campbell J, Oster G. A Model for Shell Patterns Based on Neural Activity. Veliger. 1986;28: 369–388. Available: <Go to ISI>://A1986A741000004

Cherry MI, Gosler AG. Avian eggshell coloration: new perspectives on adaptive explanations. Biol J Linn Soc. 2010;100: 753–762. Available: <Go to ISI>://000281062500002

Edwards S V, Bryan Jennings W, Shedlock AM. Phylogenetics of modern birds in the era of genomics. Proc Biol Sci. 2005;272: 979–992. 10.1098/rspb.2004.3035 PubMed DOI PMC

Cooper A, Lalueza-Fox C, Anderson S, Rambaut A, Austin J, Ward R. Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature. 2001;409: 704–707. 10.1038/35055536 PubMed DOI

Davies SJJF, Bamford M. Ratites and Tinamous: Tinamidae, Rheidae, Dromaiidae, Casuariidae, Apterygidae, Struthionidae. Oxford University Press, Incorporated; 2002. Available: http://books.google.com/books?id=tfXFQgAACAAJ

Harshman J, Braun EL, Braun MJ, Huddleston CJ, Bowie RCK, Chojnowski JL, et al. Phylogenomic evidence for multiple losses of flight in ratite birds. Proc Natl Acad Sci U S A. 2008;105: 13462–13467. 10.1073/pnas.0803242105 PubMed DOI PMC

Adamkewicz SL, Harasewych MG, Blake J, Sudek D, Bult CJ. A molecular phylogeny of the bivalve mollusks. Mol Biol Evol. 1997;14: 619–629. PubMed

Poppe GT. Philippine Marine Mollusks: Gastropoda.—Part 1. Vol. 1. ConchBooks; 2008. Available: http://books.google.com/books?id=MCMWAQAAIAAJ

Keen AM. Sea Shells of Tropical West America: Marine Mollusks from Baja California to Peru. Stanford, CA: Stanford University Press; 1971. Available: http://books.google.com/books?id=Xj-2-KxUCcYC

Cunha RL, Grande C, Zardoya R. Neogastropod phylogenetic relationships based on entire mitochondrial genomes. Bmc Evol Biol. 2009/08/25 ed. 2009;9: 210 10.1186/1471-2148-9-210 PubMed DOI PMC

Harasewych G, Moretzsohn F. The book of shells: a life-size guide to identifying and classifying six hundred seashells. Chicago: The University of Chicago Press; 2010.

Cassey P, Portugal SJ, Maurer G, Ewen JG, Boulton RL, Hauber ME, et al. Variability in Avian Eggshell Colour: A Comparative Study of Museum Eggshells. PLoS One. 2010;5 ARTN e12054 10.1371/journal.pone.0012054 PubMed DOI PMC

Igic B, Hauber ME, Galbraith JA, Grim T, Dearborn DC, Brennan PLR, et al. Comparison of micrometer- and scanning electron microscope-based measurements of avian eggshell thickness. J F Ornithol. 2010;81: 402–410. 10.1111/j.1557-9263.2010.00296.x DOI

Miksik I, Eckhardt A, Sedlakova P, Mikulikova K. Proteins of insoluble matrix of Avian (Gallus Gallus) eggshell. Connect Tissue Res. 2007;48: 1–8. 10.1080/03008200601003116 PubMed DOI

Hanley D, Stoddard MC, Cassey P, Brennan PLR. Eggshell conspicuousness in ground nesting birds: do conspicuous eggshells signal nest location to conspecifics? Avian Biol Res. 2013;6: 147–156. 10.3184/175815513x13617279883973 DOI

Boettiger A, Ermentrout B, Oster G. The neural origins of shell structure and pattern in aquatic mollusks. Proc Natl Acad Sci U S A. 2009;106: 6837–6842. 10.1073/pnas.0810311106 PubMed DOI PMC

Gong Z, Matzke NJ, Ermentrout B, Song D, Vendetti JE, Slatkin M, et al. Evolution of patterns on Conus shells. Proc Natl Acad Sci. 2012;109: E234–E241. 10.1073/pnas.1119859109 PubMed DOI PMC

Winkler FM, Estevez BF, Jollan LB, Garrido JP. Inheritance of the general shell color in the scallop Argopecten purpuratus (Bivalvia: Pectinidae). J Hered. 2001;92: 521–525. 10.1093/jhered/92.6.521 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...