Taking a bite out of spinal cord injury: do dental stem cells have the teeth for it?
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
26768693
PubMed Central
PMC11108394
DOI
10.1007/s00018-015-2126-5
PII: 10.1007/s00018-015-2126-5
Knihovny.cz E-zdroje
- Klíčová slova
- Dental stem cells, Growth factors, Immunomodulation, Neuroprotection, Spinal cord injury,
- MeSH
- kmenové buňky cytologie MeSH
- lidé MeSH
- neurotrofní faktory metabolismus MeSH
- poranění míchy terapie MeSH
- receptory faktorů růstu nervů metabolismus MeSH
- regenerativní lékařství MeSH
- transplantace kmenových buněk * MeSH
- zubní dřeň cytologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- neurotrofní faktory MeSH
- receptory faktorů růstu nervů MeSH
Dental stem cells are an emerging star on a stage that is already quite populated. Recently, there has been a lot of hype concerning these cells in dental therapies, especially in regenerative endodontics. It is fitting that most research is concentrated on dental regeneration, although other uses for these cells need to be explored in more detail. Being a true mesenchymal stem cell, their capacities could also prove beneficial in areas outside their natural environment. One such field is the central nervous system, and in particular, repairing the injured spinal cord. One of the most formidable challenges in regenerative medicine is to restore function to the injured spinal cord, and as yet, a cure for paralysis remains to be discovered. A variety of approaches have already been tested, with graft-based strategies utilising cells harbouring appropriate properties for neural regeneration showing encouraging results. Here we present a review focusing on properties of dental stem cells that endorse their use in regenerative medicine, with particular emphasis on repairing the damaged spinal cord.
Zobrazit více v PubMed
Furlan J, Sakakibara B, Miller W, Krassioukov A. Global incidence and prevalence of traumatic spinal cord injury. Can J Neurol Sci. 2013;40(4):456–464. doi: 10.1017/S0317167100014530. PubMed DOI
Lee B, Cripps R, Fitzharris M, Wing P. The global map for traumatic spinal cord injury epidemiology: update 2011, global incidence rate. Spinal Cord. 2014;52(2):110–116. doi: 10.1038/sc.2012.158. PubMed DOI
Singh A, Tetreault L, Kalsi-Ryan S, Nouri A, Fehlings M. Global prevalence and incidence of traumatic spinal cord injury. Clinical Epidemiology. 2014;6:309–331. PubMed PMC
Jensen M, Kuehn C, Amtmann D, Cardenas D. Symptom burden in persons with spinal cord injury. Arch Phys Med Rehabil. 2007;88(5):638–645. doi: 10.1016/j.apmr.2007.02.002. PubMed DOI PMC
Thomas C, Bakels R, Klein C, Zijdewind I. Human spinal cord injury: motor unit properties and behaviour. Acta Physiol. 2014;210(1):5–19. doi: 10.1111/apha.12153. PubMed DOI
Krishna V, Andrews H, Varma A, Mintzer J, Kindy M, Guest J. Spinal cord injury: how can we improve the classification and quantification of its severity and prognosis. J Neurotrauma. 2014;31(3):215–227. doi: 10.1089/neu.2013.2982. PubMed DOI PMC
David S, Aquayo A. Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science. 1981;214(4523):931–933. doi: 10.1126/science.6171034. PubMed DOI
Li Y, Raisman G. Schwann cells induce sprouting in motor and sensory axons in the adult rat spinal cord. J Neurosci. 1994;14(7):4050–4063. PubMed PMC
Kanno H, Pressman Y, Moody A, Berg R, Muir E, Rogers J, Ozawa H, Itoi E, Pearse D, Bunge M. Combination of engineered Schwann cell grafts to secrete neurotrophin and chondroitinase promotes axonal regeneration and locomotion after spinal cord injury. J Neurosci. 2014;34(5):1838–1855. doi: 10.1523/JNEUROSCI.2661-13.2014. PubMed DOI PMC
Tetzlaff W, Okon E, Karimi-Abdolrezaee S, Hill C, Sparling J, Plemel J, Plunet W, Tsai E, Baptiste D, Smithson L, Kawaja M, Fehlings M, Kwon B. A systematic review of cellular transplantation therapies for spinal cord injury. J Neurotrauma. 2011;28(8):1611–1682. doi: 10.1089/neu.2009.1177. PubMed DOI PMC
Imaizumi T, Lankford K, Kocsis J, Sasaki M, Akiyama Y, Hashi K. Comparison of myelin-forming cells as candidates for therapeutic transplantation in demyelinated CNS axons. Nō To Shinkei. 2000;52(7):609–615. PubMed
Golden K, Pearse D, Blits B, Garg M, Oudega M, Wood P, Bunge M. Transduced Schwann cells promote axon growth and myelination after spinal cord injury. Exp Neurol. 2007;207(2):203–217. doi: 10.1016/j.expneurol.2007.06.023. PubMed DOI PMC
Li Y, Field P, Raisman G. Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science. 1997;277(5334):2000–2002. doi: 10.1126/science.277.5334.2000. PubMed DOI
Rapalino O, Lazarov-Spiegler O, Agranov E, Velan G, Yoles E, Fraidakis M, Solomon A, Gepstein R, Katz A, Belkin M, Hadani M, Schwartz M. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med. 1998;4(7):814–821. doi: 10.1038/nm0798-814. PubMed DOI
Hauben E, Nevo U, Yoles E, Moalem G, Agranov E, Mor F, Akselrod S, Neeman M, Cohen I, Schwartz M. Autoimmune T cells as potential neuroprotective therapy for spinal cord injury. Lancet. 2000;355(9200):286–287. doi: 10.1016/S0140-6736(99)05140-5. PubMed DOI
Rao Y, Zhu W, Du Z, Jia C, Du T, Zhao Q, Cao X, Wang Y. Effectiveness of olfactory ensheathing cell transplantation for treatment of spinal cord injury. Genet Mol Res. 2014;13(2):4124–4129. doi: 10.4238/2014.May.30.7. PubMed DOI
Iwatsuki K, Yoshimine T, Kishima H, Aoki M, Yoshimura K, Ishihara M, Ohnishi Y, Lima C. Transplantation of olfactory mucosa following spinal cord injury promotes recovery in rats. NeuroReport. 2008;19(13):1249–1252. doi: 10.1097/WNR.0b013e328305b70b. PubMed DOI
Liu J, Chen P, Wang Q, Chen Y, Yu H, Ma J, Guo M, Piao M, Ren W, Xiang L. Meta analysis of olfactory ensheathing cell transplantation promoting functional recovery of motor nerves in rats with complete spinal cord transection. Neural Regen Res. 2014;9(20):1850–1858. doi: 10.4103/1673-5374.143429. PubMed DOI PMC
Ramón-Cueto A, Cordero M, Santos-Benito F, Avila J. Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron. 2000;25(2):425–435. doi: 10.1016/S0896-6273(00)80905-8. PubMed DOI
Bregman B, Kunkel-Bagden E, Schnell L, Dai H, Gao D, Schwab M. Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors. Nature. 1995;378(6556):498–501. doi: 10.1038/378498a0. PubMed DOI
Bradbury E, Moon L, Popat R, King V, Bennett G, Patel P, Fawcett J, McMahon S. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature. 2002;416(6881):636–640. doi: 10.1038/416636a. PubMed DOI
Yu P, Huang L, Zou J, Yu Z, Wang Y, Wang X, Xu L, Liu X, Xu X, Lu P. Immunization with recombinant Nogo-66 receptor (NgR) promotes axonal regeneration and recovery of function after spinal cord injury in rats. Neurobiol Dis. 2008;32(3):535–542. doi: 10.1016/j.nbd.2008.09.012. PubMed DOI
Zhai P, Chen X, Schreyer D. An in vitro study of peptide-loaded alginate nanospheres for antagonizing the inhibitory effect of Nogo-A protein on axonal growth. Biomed Mater. 2015;10(4):045016. doi: 10.1088/1748-6041/10/4/045016. PubMed DOI
Hauben E, Ibarra A, Mizrahi T, Barouch R, Agranov E, Schwartz M. Vaccination with a Nogo-A-derived peptide after incomplete spinal-cord injury promotes recovery via a T-cell-mediated neuroprotective response: comparison with other myelin antigens. Proc Natl Acad Sci. 2001;98(26):15173–15178. doi: 10.1073/pnas.011585298. PubMed DOI PMC
Bregman B, McAtee M, Dai H, Kuhn P. Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat. Exp Neurol. 1997;148(2):475–494. doi: 10.1006/exnr.1997.6705. PubMed DOI
Elliott Donaghue I, Tator C, Shoichet M. Sustained delivery of bioactive neurotrophin-3 to the injured spinal cord. Biomater Sci. 2015;3(1):65–72. doi: 10.1039/C4BM00311J. PubMed DOI
Rabchevsky A, Fugaccia I, Turner A, Blades D, Mattson M, Scheff S. Basic fibroblast growth factor (bFGF) enhances functional recovery following severe spinal cord injury to the rat. Exp Neurol. 2000;164(2):280–291. doi: 10.1006/exnr.2000.7399. PubMed DOI
Chen B, He J, Yang H, Zhang Q, Zhang L, Zhang X, Xie E, Liu C, Zhang R, Wang Y, Huang L, Hao D. Repair of spinal cord injury by implantation of bFGF-incorporated HEMA-MOETACL hydrogel in rats. Sci Rep. 2015;5:9017. doi: 10.1038/srep09017. PubMed DOI PMC
Dolbow D, Gorgey A, Recio A, Stiens S, Curry A, Sadowsky C, Gater D, Martin R, McDonald J. Activity-based restorative therapies after spinal cord injury: inter-institutional conceptions and perceptions. Aging Dis. 2015;6(4):254–261. doi: 10.14336/AD.2014.1105. PubMed DOI PMC
Edgerton V, Harkema S. Epidural stimulation of the spinal cord in spinal cord injury: current status and future challenges. Expert Rev Neurother. 2011;11(10):1351–1353. doi: 10.1586/ern.11.129. PubMed DOI PMC
Lu P, Tuszynski M. Growth factors and combinatorial therapies for CNS regeneration. Exp Neurol. 2008;209(2):313–320. doi: 10.1016/j.expneurol.2007.08.004. PubMed DOI PMC
Cheng H, Cao Y, Olson L. Spinal cord repair in adult paraplegic rats: partial restoration of hind limb function. Science. 1996;273(5274):510–513. doi: 10.1126/science.273.5274.510. PubMed DOI
Tsai E, Krassioukov A, Tator C. Corticospinal regeneration into lumbar grey matter correlates with locomotor recovery after complete spinal cord transection and repair with peripheral nerve grafts, fibroblast growth factor 1, fibrin glue, and spinal fusion. J Neuropathol Exp Neurol. 2005;64(3):230–244. doi: 10.1093/jnen/64.3.230. PubMed DOI
Nash H, Borke R, Anders J. Ensheathing cells and methylprednisolone promote axonal regeneration and functional recovery in the lesioned adult rat spinal cord. J Neurosci. 2002;22(16):7111–7120. PubMed PMC
Kubasak M, Jindrich D, Zhong H, Takeoka A, McFarland K, Muñoz-Quiles C, Roy R, Edgerton V, Ramón-Cueto A, Phelps P. OEG implantation and step training enhance hindlimb-stepping ability in adult spinal transected rats. Brain. 2008;131(Part 1):264–276. PubMed PMC
Wang L, Zhang R, Li J. Transplantation of neurotrophin-3-expressing bone mesenchymal stem cells improves recovery in a rat model of spinal cord injury. Acta Neurochir (Wien) 2014;156(7):1409–1418. doi: 10.1007/s00701-014-2089-6. PubMed DOI
Godinho M, Teh L, Pollett M, Goodman D, Hodgetts S, Sweetman I, Walters M, Verhaagen J, Plant G, Harvey A. Immunohistochemical, ultrastructural and functional analysis of axonal regeneration through peripheral nerve grafts containing Schwann cells expressing BDNF, CNTF or NT3. PLoS One. 2013;8(8):e69987. doi: 10.1371/journal.pone.0069987. PubMed DOI PMC
Assunção-Silva R, Gomes E, Sousa N, Silva N, Salgado A. Hydrogels and cell based therapies in spinal cord injury regeneration. Stem Cells Int. 2015;2015:948040. doi: 10.1155/2015/948040. PubMed DOI PMC
Germain L, De Berdt P, Vanacker J, Leprince J, Diogenes A, Jacobs D, Vandermeulen G, Bouzin C, Préat V, Dupont-Gillain C, des Rieux A. Fibrin hydrogels to deliver dental stem cells of the apical papilla for regenerative medicine. Regen Med. 2015;10(2):153–167. doi: 10.2217/rme.14.81. PubMed DOI
Tsintou M, Dalamagkas K, Seifalian A. Advances in regenerative therapies for spinal cord injury: a biomaterials approach. Neural Regen Res. 2015;10(5):726–742. doi: 10.4103/1673-5374.156966. PubMed DOI PMC
Phinney D, Prockop D. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells. 2007;25(11):2896–2902. doi: 10.1634/stemcells.2007-0637. PubMed DOI
Liu S, Qu Y, Stewart T, Howard M, Chakrabortty S, Holekamp T, McDonald J. Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc Natl Acad Sci. 2000;97(11):6126–6131. doi: 10.1073/pnas.97.11.6126. PubMed DOI PMC
Cao Q, Benton R, Whittemore S. Stem cell repair of central nervous system injury. J Neurosci Res. 2002;68(5):501–510. doi: 10.1002/jnr.10240. PubMed DOI
Oh J, Lee K-I, Kim H-T, You Y, Yoon D, Song K, Cheong E, Ha Y. Human-induced pluripotent stem cells generated from intervertebral disc cells improve neurologic functions in spinal cord injury. Stem Cell Res Ther. 2015;6(1):125. doi: 10.1186/s13287-015-0118-x. PubMed DOI PMC
Lee-Kubli C, Lu P. Induced pluripotent stem cell-derived neural stem cell therapies for spinal cord injury. Neural Regen Res. 2015;10(1):10–16. doi: 10.4103/1673-5374.150638. PubMed DOI PMC
Sareen D, Gowing G, Sahabian A, Staggenborg K, Paradis R, Avalos P, Latter J, Ornelas L, Garcia L, Svendsen C. Human induced pluripotent stem cells are a novel source of neural progenitor cells (iNPCs) that migrate and integrate in the rodent spinal cord. J Comp Neurol. 2014;522(12):2707–2728. doi: 10.1002/cne.23578. PubMed DOI PMC
Wang S, Bates J, Li X, Schanz S, Chandler-Militello D, Levine C, Maherali N, Studer L, Hochedlinger K, Windrem M, Goldman S. Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell. 2013;12(2):252–264. doi: 10.1016/j.stem.2012.12.002. PubMed DOI PMC
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–676. doi: 10.1016/j.cell.2006.07.024. PubMed DOI
Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science. 2008;322(5903):949–953. doi: 10.1126/science.1164270. PubMed DOI
Mozafari S, Laterza C, Roussel D, Bachelin C, Marteyn A, Deboux C, Martino G, Baron-Van Evercooren A. Skin-derived neural precursors competitively generate functional myelin in adult demyelinated mice. J Clin Investig. 2015;125(9):3642–3656. doi: 10.1172/JCI80437. PubMed DOI PMC
Akiyama Y, Honmou O, Kato T, Uede T, Hashi K, Kocsis J. Transplantation of clonal neural precursor cells derived from adult human brain establishes functional peripheral myelin in the rat spinal cord. Exp Neurol. 2001;167(1):27–39. doi: 10.1006/exnr.2000.7539. PubMed DOI
Mothe A, Tator C. Transplanted neural stem/progenitor cells generate myelinating oligodendrocytes and Schwann cells in spinal cord demyelination and dysmyelination. Exp Neurol. 2008;213(1):176–190. doi: 10.1016/j.expneurol.2008.05.024. PubMed DOI
Himes B, Liu Y, Solowska J, Snyder E, Fischer I, Tessler A. Transplants of cells genetically modified to express neurotrophin-3 rescue axotomized Clarke’s nucleus neurons after spinal cord hemisection in adult rats. J Neurosci Res. 2001;65(6):549–564. doi: 10.1002/jnr.1185. PubMed DOI
Liu Y, Himes B, Solowska J, Moul J, Chow S, Park K, Tessler A, Murray M, Snyder E, Fischer I. Intraspinal delivery of neurotrophin-3 using neural stem cells genetically modified by recombinant retrovirus. Exp Neurol. 1999;158(1):9–26. doi: 10.1006/exnr.1999.7079. PubMed DOI
Syková E, Homola A, Mazanec R, Lachmann H, Konrádová S, Kobylka P, Pádr R, Neuwirth J, Komrska V, Vávra V, Stulík J, Bojar M. Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant. 2006;15(8–9):675–687. doi: 10.3727/000000006783464381. PubMed DOI
Mannoji C, Koda M, Kamiya K, Dezawa M, Hashimoto M, Furuya T, Okawa A, Takahashi K, Yamazaki M. Transplantation of human bone marrow stromal cell-derived neuroregenrative cells promotes functional recovery after spinal cord injury in mice. Acta Neurobiol Exp. 2014;74(4):479–488. PubMed
Akiyama Y, Radtke C, Honmou O, Kocsis J. Remyelination of the spinal cord following intravenous delivery of bone marrow cells. Glia. 2002;39(3):229–236. doi: 10.1002/glia.10102. PubMed DOI PMC
da Silva Meirelles L, Chagastelles P, Nardi N. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci. 2006;119(11):2204–2213. doi: 10.1242/jcs.02932. PubMed DOI
Kang S, Shin M, Jung J, Kim Y, Kim C. Autologous adipose tissue-derived stromal cells for treatment of spinal cord injury. Stem Cells Dev. 2006;15(4):583–594. doi: 10.1089/scd.2006.15.583. PubMed DOI
Dong Y, Yang L, Yang L, Zhao H, Zhang C, Wu D. Transplantation of neurotrophin-3-transfected bone marrow mesenchymal stem cells for the repair of spinal cord injury. Neural Regen Res. 2014;9(16):1520–1524. doi: 10.4103/1673-5374.139478. PubMed DOI PMC
Shi S, Robey P, Gronthos S. Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone. 2001;29(6):532–539. doi: 10.1016/S8756-3282(01)00612-3. PubMed DOI
Arthur A, Shi S, Zannettino A, Fujii N, Gronthos S, Koblar S. Implanted adult human dental pulp stem cells induce endogenous axon guidance. Stem Cells. 2009;27(9):2229–2237. doi: 10.1002/stem.138. PubMed DOI
de Almeida F, Marques S, Ramalho Bdos S, Rodrigues R, Cadilhe D, Furtado D, Kerkis I, Pereira L, Rehen S, Martinez A. Human dental pulp cells: a new source of cell therapy in a mouse model of compressive spinal cord injury. J Neurotrauma. 2011;28(9):1939–1949. doi: 10.1089/neu.2010.1317. PubMed DOI
Pomerat C, Contino R. The cultivation of dental tissues. Oral Surg Med Oral Pathol. 1965;19(5):628–632. doi: 10.1016/0030-4220(65)90408-1. PubMed DOI
Gronthos S, Mankani M, Brahim J, Robey P, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci. 2000;97(25):13625–13630. doi: 10.1073/pnas.240309797. PubMed DOI PMC
Miura M, Gronthos S, Zhao M, Lu B, Fisher L, Robey P, Shi S. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci. 2003;100(10):5807–5812. doi: 10.1073/pnas.0937635100. PubMed DOI PMC
Seo B, Miura M, Gronthos S, Bartold P, Batouli S, Brahim J, Young M, Robey P, Wang C, Shi S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364(9429):149–155. doi: 10.1016/S0140-6736(04)16627-0. PubMed DOI
Morsczeck C, Götz W, Schierholz J, Zeilhofer F, Kühn U, Möhl C, Sippel C, Hoffmann K. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol. 2005;24(2):155–165. doi: 10.1016/j.matbio.2004.12.004. PubMed DOI
Sonoyama W, Liu Y, Fang D, Yamaza T, Seo B, Zhang C, Liu H, Gronthos S, Wang C, Wang S, Shi S. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One. 2006;1:e79. doi: 10.1371/journal.pone.0000079. PubMed DOI PMC
Ikeda E, Yagi K, Kojima M, Yagyuu T, Ohshima A, Sobajima S, Tadokoro M, Katsube Y, Isoda K, Kondoh M, Kawase M, Go M, Adachi H, Yokota Y, Kirita T, Ohgushi H. Multipotent cells from the human third molar: feasibility of cell-based therapy for liver disease. Differentiation. 2008;76(5):495–505. doi: 10.1111/j.1432-0436.2007.00245.x. PubMed DOI
Zhang Q, Shi S, Liu Y, Uyanne J, Shi Y, Shi S, Le A. Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol. 2009;183(12):7787–7798. doi: 10.4049/jimmunol.0902318. PubMed DOI PMC
Marynka-Kalmani K, Treves S, Yafee M, Rachima H, Gafni Y, Cohen M, Pitaru S. The lamina propria of adult human oral mucosa harbors a novel stem cell population. Stem Cells. 2010;28(5):984–995. PubMed
Liu J, Yu F, Sun Y, Jiang B, Zhang W, Yang J, Xu G, Liang A, Liu S. Concise reviews: characteristics and potential applications of human dental tissue-derived mesenchymal stem cells. Stem Cells. 2015;33(3):627–638. doi: 10.1002/stem.1909. PubMed DOI
Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–317. doi: 10.1080/14653240600855905. PubMed DOI
Egusa H, Sonoyama W, Nishimura M, Atsuta I, Akiyama K. Stem cells in dentistry—Part I: stem cell sources. J Prosthodont Res. 2012;56(3):151–165. doi: 10.1016/j.jpor.2012.06.001. PubMed DOI
Nakamura S, Yamada Y, Katagiri W, Sugito T, Ito K, Ueda M. Stem cell proliferation pathways comparison between human exfoliated deciduous teeth and dental pulp stem cells by gene expression profile from promising dental pulp. J Endod. 2009;35(11):1536–1542. doi: 10.1016/j.joen.2009.07.024. PubMed DOI
Sonoyama W, Liu Y, Yamaza T, Tuan R, Wang S, Shi S, Huang G. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod. 2008;34(2):166–171. doi: 10.1016/j.joen.2007.11.021. PubMed DOI PMC
Huang G, Sonoyama W, Liu Y, Liu H, Wang S, Shi S. The hidden treasure in apical papilla: the potential role in pulp/dentin regeneration and bioroot engineering. J Endod. 2008;34(6):645–651. doi: 10.1016/j.joen.2008.03.001. PubMed DOI PMC
Wang X, Sha X, Li G, Yang F, Ji K, Wen L, Liu S, Chen L, Ding Y, Xuan K. Comparative characterization of stem cells from human exfoliated deciduous teeth and dental pulp stem cells. Arch Oral Biol. 2012;57(9):1231–1240. doi: 10.1016/j.archoralbio.2012.02.014. PubMed DOI
Yang H, Gao L, An Y, Hu C, Jin F, Zhou J, Jin Y, Chen F. Comparison of mesenchymal stem cells derived from gingival tissue and periodontal ligament in different incubation conditions. Biomaterials. 2013;34(29):7033–7047. doi: 10.1016/j.biomaterials.2013.05.025. PubMed DOI
Tomar G, Srivastava R, Gupta N, Barhanpurkar A, Pote S, Jhaveri H, Mishra G, Wani M. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine. Biochem Biophys Res Commun. 2010;393(3):377–383. doi: 10.1016/j.bbrc.2010.01.126. PubMed DOI
Dupin E, Sommer L. Neural crest progenitors and stem cells: from early development to adulthood. Dev Biol. 2012;366(1):83–95. doi: 10.1016/j.ydbio.2012.02.035. PubMed DOI
Mayor R, Theveneau E. The neural crest. Development. 2013;140(11):2247–2251. doi: 10.1242/dev.091751. PubMed DOI
Jessen K, Mirsky R, Lloyd A. Schwann cells: development and role in nerve repair. Cold Spring Harb Perspect Biol. 2015;7(7):a020487. doi: 10.1101/cshperspect.a020487. PubMed DOI PMC
Techawattanawisal W, Nakahama K, Komaki M, Abe M, Takagi Y, Morita I. Isolation of multipotent stem cells from adult rat periodontal ligament by neurosphere-forming culture system. Biochem Biophys Res Commun. 2007;357(4):917–923. doi: 10.1016/j.bbrc.2007.04.031. PubMed DOI
Kaltschmidt B, Kaltschmidt C, Widera D. Adult craniofacial stem cells: sources and relation to the neural crest. Stem Cell Rev Rep. 2012;8(3):658–671. doi: 10.1007/s12015-011-9340-9. PubMed DOI
Janebodin K, Horst O, Ieronimakis N, Balasundaram G, Reesukumal K, Pratumvinit B, Reyes M. Isolation and characterization of neural crest-derived stem cells from dental pulp of neonatal mice. PLoS One. 2011;6(11):e27526. doi: 10.1371/journal.pone.0027526. PubMed DOI PMC
Achilleos A, Trainor P. Neural crest stem cells: discovery, properties and potential for therapy. Cell Res. 2012;22(2):288–304. doi: 10.1038/cr.2012.11. PubMed DOI PMC
Kaukua N, Shahidi M, Konstantinidou C, Dyachuk V, Kaucka M, Furlan A, An Z, Wang L, Hultman I, Ahrlund-Richter L, Blom H, Brismar H, Lopes N, Pachnis V, Suter U, Clevers H, Thesleff I, Sharpe P, Ernfors P, Fried K, Adameyko I. Glial origin of mesenchymal stem cells in a tooth model system. Nature. 2014;513(7519):551–554. doi: 10.1038/nature13536. PubMed DOI
Yamauchi J, Chan J, Shooter E. Neurotrophin 3 activation of TrkC induces Schwann cell migration through the c-Jun N-terminal kinase pathway. Proc Natl Acad Sci. 2003;100(24):14421–14426. doi: 10.1073/pnas.2336152100. PubMed DOI PMC
Tomita K, Kubo T, Matsuda K, Fujiwara T, Yano K, Winograd J, Tohyama M, Hosokawa K. The neurotrophin receptor p75NTR in Schwann cells is implicated in remyelination and motor recovery after peripheral nerve injury. Glia. 2007;55(11):1199–1208. doi: 10.1002/glia.20533. PubMed DOI
Waddington R, Youde S, Lee C, Sloan A. Isolation of distinct progenitor stem cell populations from dental pulp. Cells Tissues Organs. 2009;189(1–4):268–274. doi: 10.1159/000151447. PubMed DOI
Abe S, Hamada K, Miura M, Yamaguchi S. Neural crest stem cell property of apical pulp cells derived from human developing tooth. Cell Biol Int. 2012;36(10):927–936. doi: 10.1042/CBI20110506. PubMed DOI
Martens W, Wolfs E, Struys T, Politis C, Bronckaers A, Lambrichts I. Expression pattern of basal markers in human dental pulp stem cells and tissue. Cells Tissues Organs. 2012;196(6):490–500. doi: 10.1159/000338654. PubMed DOI
Huang E, Reichardt L. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci. 2001;24:677–736. doi: 10.1146/annurev.neuro.24.1.677. PubMed DOI PMC
Meeker R, Williams K. The p75 neurotrophin receptor: at the crossroad of neural repair and death. Neural Regen Res. 2015;10(5):721–725. doi: 10.4103/1673-5374.156967. PubMed DOI PMC
Chu G, Yu W, Fehlings M. The p75 neurotrophin receptor is essential for neuronal cell survival and improvement of functional recovery after spinal cord injury. Neuroscience. 2007;148(3):668–682. doi: 10.1016/j.neuroscience.2007.05.028. PubMed DOI
Lindsley A, Snider P, Zhou H, Rogers R, Wang J, Olaopa M, Kruzynska-Frejtag A, Koushik S, Lilly B, Burch J, Firulli A, Conway S. Identification and characterization of a novel Schwann and outflow tract endocardial cushion lineage-restricted periostin enhancer. Dev Biol. 2007;307(2):340–355. doi: 10.1016/j.ydbio.2007.04.041. PubMed DOI PMC
Matsuzawa M, Arai C, Nomura Y, Murata T, Yamakoshi Y, Oida S, Hanada N, Nakamura Y. Periostin of human periodontal ligament fibroblasts promotes migration of human mesenchymal stem cell through the αvβ3 integrin/FAK/PI3K/Akt pathway. J Periodont Res. 2015;50(6):855–863. doi: 10.1111/jre.12277. PubMed DOI
Wiesen R, Padial-Molina M, Volk S, McDonald N, Chiego D, Jr, Botero T, Rios H. The expression of periostin in dental pulp cells. Arch Oral Biol. 2015;60(5):760–767. doi: 10.1016/j.archoralbio.2015.02.008. PubMed DOI
Sonnenberg-Riethmacher E, Miehe M, Riethmacher D. Promotion of periostin expression contributes to the migration of Schwann cells. J Cell Sci. 2015;128(17):3345–3355. doi: 10.1242/jcs.174177. PubMed DOI
Martens W, Sanen K, Georgiou M, Struys T, Bronckaers A, Ameloot M, Phillips J, Lambrichts I. Human dental pulp stem cells can differentiate into Schwann cells and promote and guide neurite outgrowth in an aligned tissue-engineered collagen construct in vitro. FASEB J. 2014;28(4):1634–1643. doi: 10.1096/fj.13-243980. PubMed DOI PMC
Hammarberg H, Piehl F, Cullheim S, Fjell J, Hökfelt T, Fried K. GDNF mRNA in Schwann cells and DRG satellite cells after chronic sciatic nerve injury. Neuroreport. 1996;7(4):857–860. doi: 10.1097/00001756-199603220-00004. PubMed DOI
Bär K, Saldanha G, Kennedy A, Facer P, Birch R, Carlstedt T, Anand P. GDNF and its receptor component Ret in injured human nerves and dorsal root ganglia. Neuroreport. 1998;9(1):43–47. doi: 10.1097/00001756-199801050-00009. PubMed DOI
Höke A, Cheng C, Zochodne D. Expression of glial cell line-derived neurotrophic factor family of growth factors in peripheral nerve injury in rats. Neuroreport. 2000;11(8):1651–1654. doi: 10.1097/00001756-200006050-00011. PubMed DOI
Tannemaat M, Eggers R, Hendriks W, de Ruiter G, van Heerikhuize J, Pool C, Malessy M, Boer G, Verhaagen J. Differential effects of lentiviral vector-mediated overexpression of nerve growth factor and glial cell line-derived neurotrophic factor on regenerating sensory and motor axons in the transected peripheral nerve. Eur J Neurosci. 2008;28(8):1467–1479. doi: 10.1111/j.1460-9568.2008.06452.x. PubMed DOI
Piquilloud G, Christen T, Pfister L, Gander B, Papaloïzos M. Variations in glial cell line-derived neurotrophic factor release from biodegradable nerve conduits modify the rate of functional motor recovery after rat primary nerve repairs. Eur J Neurosci. 2007;26(5):1109–1117. doi: 10.1111/j.1460-9568.2007.05748.x. PubMed DOI
Fernández Vallone V, Romaniuk M, Choi H, Labovsky V, Otaegui J, Chasseing N. Mesenchymal stem cells and their use in therapy: what has been achieved? Differentiation. 2013;85(1–2):1–10. doi: 10.1016/j.diff.2012.08.004. PubMed DOI
Ganz J, Arie I, Ben-Zur T, Dadon-Nachum M, Pour S, Araidy S, Pitaru S, Offen D. Astrocyte-like cells derived from human oral mucosa stem cells provide neuroprotection in vitro and in vivo. Stem Cells Transl Med. 2014;3(3):375–386. doi: 10.5966/sctm.2013-0074. PubMed DOI PMC
Ganz J, Arie I, Buch S, Zur T, Barhum Y, Pour S, Araidy S, Pitaru S, Offen D. Dopaminergic-like neurons derived from oral mucosa stem cells by developmental cues improve symptoms in the hemi-parkinsonian rat model. PLoS One. 2014;9(6):e100445. doi: 10.1371/journal.pone.0100445. PubMed DOI PMC
Jarmalavičiūtė A, Tunaitis V, Pivoraitė U, Venalis A, Pivoriūnas A. Exosomes from dental pulp stem cells rescue human dopaminergic neurons from 6-hydroxy-dopamine-induced apoptosis. Cytotherapy. 2015;17(7):932–939. doi: 10.1016/j.jcyt.2014.07.013. PubMed DOI
Sasaki R, Aoki S, Yamato M, Uchiyama H, Wada K, Okano T, Ogiuchi H. Tubulation with dental pulp cells promotes facial nerve regeneration in rats. Tissue Eng Part A. 2008;14(7):1141–1147. doi: 10.1089/ten.tea.2007.0157. PubMed DOI
Sasaki R, Aoki S, Yamato M, Uchiyama H, Wada K, Ogiuchi H, Okano T, Ando T. PLGA artificial nerve conduits with dental pulp cells promote facial nerve regeneration. J Tissue Eng Regen Med. 2011;5(10):823–830. doi: 10.1002/term.387. PubMed DOI
Sasaki R, Matsumine H, Watanabe Y, Takeuchi Y, Yamato M, Okano T, Miyata M, Ando T. Electrophysiologic and functional evaluations of regenerated facial nerve defects with a tube containing dental pulp cells in rats. Plast Reconstr Surg. 2014;134(5):970–978. doi: 10.1097/PRS.0000000000000602. PubMed DOI
Tseng L, Chen S, Lin M, Lin Y. Transplantation of human dental pulp-derived stem cells protects against heatstroke in mice. Cell Transplant. 2015;24(5):921–937. doi: 10.3727/096368914X678580. PubMed DOI
Sugiyama M, Iohara K, Wakita H, Hattori H, Ueda M, Matsushita K, Nakashima M. Dental pulp-derived CD31−/CD146− side population stem/progenitor cells enhance recovery of focal cerebral ischemia in rats. Tissue Eng Part A. 2011;17(9–10):1303–1311. doi: 10.1089/ten.tea.2010.0306. PubMed DOI
Sugiyama M, Hattori H, Inoue T, Wakita H, Hibi H, Ueda M. Stem cells from human exfoliated deciduous teeth enhance recovery from focal cerebral ischemia in rats. J Oral Maxillofac Surg Med Pathol. 2014;26(4):443–449. doi: 10.1016/j.ajoms.2013.04.014. DOI
Inoue T, Sugiyama M, Hattori H, Wakita H, Wakabayashi T, Ueda M. Stem cells from human exfoliated deciduous tooth-derived conditioned medium enhance recovery of focal cerebral ischemia in rats. Tissue Eng Part A. 2013;19(1–2):24–29. doi: 10.1089/ten.tea.2011.0385. PubMed DOI PMC
Iohara K, Zheng L, Wake H, Ito M, Nabekura J, Wakita H, Nakamura H, Into T, Matsushita K, Nakashima M. A novel stem cell source for vasculogenesis in ischemia: subfraction of side population cells from dental pulp. Stem Cells. 2008;26(9):2408–2418. doi: 10.1634/stemcells.2008-0393. PubMed DOI
Mead B, Logan A, Berry M, Leadbeater W, Scheven B. Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury. Investig Ophthamol Vis Sci. 2013;54(12):7544–7556. doi: 10.1167/iovs.13-13045. PubMed DOI
Mead B, Logan A, Berry M, Leadbeater W, Scheven B. Paracrine-mediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells: comparison with human bone marrow and adipose-derived mesenchymal stem cells. PLoS One. 2014;9(10):e109305. doi: 10.1371/journal.pone.0109305. PubMed DOI PMC
Casagrande L, Cordeiro M, Nör S, Nör J. Dental pulp stem cells in regenerative dentistry. Odontology. 2011;99(1):1–7. doi: 10.1007/s10266-010-0154-z. PubMed DOI
Gandia C, Armiñan A, García-Verdugo J, Lledó E, Ruiz A, Miñana M, Sanchez-Torrijos J, Payá R, Mirabet V, Carbonell-Uberos F, Llop M, Montero J, Sepúlveda P. Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem Cells. 2008;26(3):638–645. doi: 10.1634/stemcells.2007-0484. PubMed DOI
Govindasamy V, Ronald V, Abdullah A, Nathan K, Ab Aziz Z, Abdullah M, Musa S, Kasim N, Bhonde R. Differentiation of dental pulp stem cells into islet-like aggregates. J Dent Res. 2011;90(5):646–652. doi: 10.1177/0022034510396879. PubMed DOI
Kerkis I, Ambrosio C, Kerkis A, Martins D, Zucconi E, Fonseca S, Cabral R, Maranduba C, Gaiad T, Morini A, Vieira N, Brolio M, Sant’Anna O, Miglino M, Zatz M. Early transplantation of human immature dental pulp stem cells from baby teeth to golden retriever muscular dystrophy (GRMD) dogs: local or systemic? J Transl Med. 2008;6:35. doi: 10.1186/1479-5876-6-35. PubMed DOI PMC
Yang R, Chen M, Lee C, Yoon R, Lal S, Mao J. Clones of ectopic stem cells in the regeneration of muscle defects in vivo. PLoS One. 2010;5(10):e13547. doi: 10.1371/journal.pone.0013547. PubMed DOI PMC
Monteiro B, Serafim R, Melo G, Silva M, Lizier N, Maranduba C, Smith R, Kerkis A, Cerruti H, Gomes J, Kerkis I. Human immature dental pulp stem cells share key characteristic features with limbal stem cells. Cell Prolif. 2009;42(5):587–594. doi: 10.1111/j.1365-2184.2009.00623.x. PubMed DOI PMC
Tropepe V, Sibilia M, Ciruna B, Rossant J, Wagner E, van der Kooy D. Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev Biol. 1999;208(1):166–188. doi: 10.1006/dbio.1998.9192. PubMed DOI
Reynolds B, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992;255(5052):1707–1710. doi: 10.1126/science.1553558. PubMed DOI
Coutu D, Galipeau J. Roles of FGF signaling in stem cell self-renewal, senescence and aging. Aging. 2011;3(10):920–933. doi: 10.18632/aging.100369. PubMed DOI PMC
Salehinejad P, Alitheen N, Mandegary A, Nematollahi-Mahani S, Janzamin E. Effect of EGF and FGF on the expansion properties of human umbilical cord mesenchymal cells. Vitro Cell Dev Biol Anim. 2013;49(7):515–523. doi: 10.1007/s11626-013-9631-3. PubMed DOI
Bressan R, Melo F, Almeida P, Bittencourt D, Visoni S, Jeremias T, Costa A, Leal R, Trentin A. EGF-FGF2 stimulates the proliferation and improves the neuronal commitment of mouse epidermal neural crest stem cells (EPI-NCSCs) Exp Cell Res. 2014;327(1):37–47. doi: 10.1016/j.yexcr.2014.05.020. PubMed DOI
Schwindt T, Motta F, Gabriela F, Cristina G, Guimarães A, Calcagnotto M, Pesquero J, Mello L. Effects of FGF-2 and EGF removal on the differentiation of mouse neural precursor cells. Ann Braz Acad Sci. 2009;81(3):443–452. doi: 10.1590/S0001-37652009000300009. PubMed DOI
Kelly C, Tyers P, Borg M, Svendsen C, Dunnett S, Rosser A. EGF and FGF-2 responsiveness of rat and mouse neural precursors derived from the embryonic CNS. Brain Res Bull. 2005;68(1–2):83–94. doi: 10.1016/j.brainresbull.2005.08.020. PubMed DOI
Xian C, Zhou X. EGF family of growth factors: essential roles and functional redundancy in the nerve system. Front Biosci. 2004;9(1):85–92. doi: 10.2741/1210. PubMed DOI
Represa A, Shimazaki T, Simmonds M, Weiss S. EGF-responsive neural stem cells are a transient population in the developing mouse spinal cord. Eur J Neurosci. 2001;14(3):452–462. doi: 10.1046/j.0953-816x.2001.01660.x. PubMed DOI
Hugnot J. Isolate and culture neural stem cells from the mouse adult spinal cord. In: Reynolds B, Deleyrolle L, editors. Neural progenitor cells: methods and protocols. New York: Springer; 2013. pp. 53–63.
Bauchet L, Lonjon N, Vachiery-Lahaye F, Boularan A, Privat A, Hugnot J. Isolation and culture of precursor cells from the adult human spinal cord. In: Reynolds B, Deleyrolle L, editors. Neural progenitor cells: methods and protocols. New York: Springer; 2013. pp. 87–93. PubMed
Trubiani O, Zalzal S, Paganelli R, Marchisio M, Giancola R, Pizzicannella J, Bühring H, Piattelli M, Caputi S, Nanci A. Expression profile of the embryonic markers nanog, OCT-4, SSEA-1, SSEA-4, and frizzled-9 receptor in human periodontal ligament mesenchymal stem cells. J Cell Physiol. 2010;225(1):123–131. doi: 10.1002/jcp.22203. PubMed DOI
Paschalidis T, Bakopoulou A, Papa P, Leyhausen G, Geurtsen W, Koidis P. Dental pulp stem cells’ secretome enhances pulp repair processes and compensates TEGDMA-induced cytotoxicity. Dent Mater. 2014;30(12):e405–e418. doi: 10.1016/j.dental.2014.08.377. PubMed DOI
Demircan P, Sariboyaci A, Unal Z, Gacar G, Subasi C, Karaoz E. Immunoregulatory effects of human dental pulp-derived stem cells on T cells: comparison of transwell co-culture and mixed lymphocyte reaction systems. Cytotherapy. 2011;13(10):1205–1220. doi: 10.3109/14653249.2011.605351. PubMed DOI
Hamanoue M, Takemoto N, Matsumoto K, Nakamura T, Nakajima K, Kohsaka S. Neurotrophic effect of hepatocyte growth factor on central nervous system neurons in vitro. J Neurosci Res. 1996;43(5):554–564. doi: 10.1002/(SICI)1097-4547(19960301)43:5<554::AID-JNR5>3.0.CO;2-H. PubMed DOI
Ebens A, Brose K, Leonardo E, Hanson M, Bladt F, Birchmeier C, Barres B, Tessier-Lavigne M. Hepatocyte growth factor/scatter factor is an axonal chemoattractant and a neurotrophic factor for spinal motor neurons. Neuron. 1996;17(6):1157–1172. doi: 10.1016/S0896-6273(00)80247-0. PubMed DOI
Kitamura K, Iwanami A, Nakamura M, Yamane J, Watanabe K, Suzuki Y, Miyazawa D, Shibata S, Funakoshi H, Miyatake S, Coffin R, Nakamura T, Toyama Y, Okano H. Hepatocyte growth factor promotes endogenous repair and functional recovery after spinal cord injury. J Neurosci Res. 2007;85(11):2332–2342. doi: 10.1002/jnr.21372. PubMed DOI
Jeong S, Kwon M, Lee H, Joe E, Lee J, Kim S, Suh-Kim H, Kim B. Hepatocyte growth factor reduces astrocytic scar formation and promotes axonal growth beyond glial scars after spinal cord injury. Exp Neurol. 2012;233(1):312–322. doi: 10.1016/j.expneurol.2011.10.021. PubMed DOI
Zhang Z, Guth L. Experimental spinal cord injury: Wallerian degeneration in the dorsal column is followed by revascularization, glial proliferation, and nerve regeneration. Exp Neurol. 1997;147(1):159–171. doi: 10.1006/exnr.1997.6590. PubMed DOI
Casella G, Marcillo A, Bunge M, Wood P. New vascular tissue rapidly replaces neural parenchyma and vessels destroyed by a contusion injury to the rat spinal cord. Exp Neurol. 2002;173(1):63–76. doi: 10.1006/exnr.2001.7827. PubMed DOI
Folkman J, Shing Y. Angiogenesis. J Biol Chem. 1992;267(16):10931–10934. PubMed
Ferrara N. Molecular and biological properties of vascular endothelial growth factor. J Mol Med. 1999;77(7):527–543. doi: 10.1007/s001099900019. PubMed DOI
Strojny C, Boyle M, Bartholomew A, Sundivakkam P, Alapati S. Interferon gamma-treated dental pulp stem cells promote human mesenchymal stem cell migration in vitro. J Endod. 2015;41(8):1259–1264. doi: 10.1016/j.joen.2015.02.018. PubMed DOI PMC
Jin K, Zhu Y, Sun Y, Mao X, Xie L, Greenberg D. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci. 2002;99(18):11946–11950. doi: 10.1073/pnas.182296499. PubMed DOI PMC
Krum J, Mani N, Rosenstein J. Angiogenic and astroglial responses to vascular endothelial growth factor administration in adult rat brain. Neuroscience. 2002;110(4):589–604. doi: 10.1016/S0306-4522(01)00615-7. PubMed DOI
Krum J, Khaibullina A. Inhibition of endogenous VEGF impedes revascularization and astroglial proliferation: roles for VEGF in brain repair. Exp Neurol. 2003;181(2):241–257. doi: 10.1016/S0014-4886(03)00039-6. PubMed DOI
des Rieux A, De Berdt P, Ansorena E, Ucakar B, Damien J, Schakman O, Audouard E, Bouzin C, Auhl D, Simón-Yarza T, Feron O, Blanco-Prieto M, Carmeliet P, Bailly C, Clotman F, Préat V. Vascular endothelial growth factor-loaded injectable hydrogel enhances plasticity in the injured spinal cord. J Biomed Mater Res Part A. 2014;102(7):2345–2355. doi: 10.1002/jbm.a.34915. PubMed DOI
Pelletier J, Roudier E, Abraham P, Fromy B, Saumet J, Birot O, Sigaudo-Roussel D. VEGF-A promotes both pro-angiogenic and neurotrophic capacities for nerve recovery after compressive neuropathy in rats. Mol Neurobiol. 2015;51(1):240–251. doi: 10.1007/s12035-014-8754-1. PubMed DOI
Jiang L, Zhu Y, Du R, Gu Y, Xia L, Qin F, Ritchie H. The expression and role of stromal cell-derived factor-1alpha-CXCR4 axis in human dental pulp. J Endod. 2008;34(8):939–944. doi: 10.1016/j.joen.2008.05.015. PubMed DOI PMC
Imitola J, Raddassi K, Park K, Mueller F, Nieto M, Teng Y, Frenkel D, Li J, Sidman R, Walsh C, Snyder E, Khoury S. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci. 2004;101(52):18117–18122. doi: 10.1073/pnas.0408258102. PubMed DOI PMC
Takeuchi H, Natsume A, Wakabayashi T, Aoshima C, Shimato S, Ito M, Ishii J, Maeda Y, Hara M, Kim S, Yoshida J. Intravenously transplanted human neural stem cells migrate to the injured spinal cord in adult mice in an SDF-1- and HGF-dependent manner. Neurosci Lett. 2007;426(2):69–74. doi: 10.1016/j.neulet.2007.08.048. PubMed DOI
Carbajal K, Schaumburg C, Strieter R, Kane J, Lane T. Migration of engrafted neural stem cells is mediated by CXCL12 signaling through CXCR4 in a viral model of multiple sclerosis. Proc Natl Acad Sci. 2010;107(24):11068–11073. doi: 10.1073/pnas.1006375107. PubMed DOI PMC
Akazawa Y, Hasegawa T, Yoshimura Y, Chosa N, Asakawa T, Ueda K, Sugimoto A, Kitamura T, Nakagawa H, Ishisaki A, Iwamoto T. Recruitment of mesenchymal stem cells by stromal cell-derived factor 1α in pulp cells from deciduous teeth. Int J Mol Med. 2015;36(2):442–448. PubMed
Jaerve A, Bosse F, Müller H. SDF-1/CXCL12: its role in spinal cord injury. Int J Biochem Cell Biol. 2012;44(3):452–456. doi: 10.1016/j.biocel.2011.11.023. PubMed DOI
Opatz J, Küry P, Schiwy N, Järve A, Estrada V, Brazda N, Bosse F, Müller H. SDF-1 stimulates neurite growth on inhibitory CNS myelin. Mol Cell Neurosci. 2009;40(2):293–300. doi: 10.1016/j.mcn.2008.11.002. PubMed DOI
Dziembowska M, Tham T, Lau P, Vitry S, Lazarini F, Dubois-Dalcq M. A role for CXCR4 signaling in survival and migration of neural and oligodendrocyte precursors. Glia. 2005;50(3):258–269. doi: 10.1002/glia.20170. PubMed DOI
Carbajal K, Miranda J, Tsukamoto M, Lane T. CXCR4 signaling regulates remyelination by endogenous oligodendrocyte progenitor cells in a viral model of demyelination. Glia. 2011;59(12):1813–1821. doi: 10.1002/glia.21225. PubMed DOI PMC
Göttle P, Kremer D, Jander S, Odemis V, Engele J, Hartung H, Küry P. Activation of CXCR7 receptor promotes oligodendroglial cell maturation. Ann Neurol. 2010;68(6):915–924. doi: 10.1002/ana.22214. PubMed DOI
Balabanian K, Lagane B, Infantino S, Chow K, Harriague J, Moepps B, Arenzana-Seisdedos F, Thelen M, Bachelerie F. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem. 2005;280(42):35760–35766. doi: 10.1074/jbc.M508234200. PubMed DOI
Williams J, Patel J, Daniels B, Klein R. Targeting CXCR7/ACKR3 as a therapeutic strategy to promote remyelination in the adult central nervous system. J Exp Med. 2014;211(5):791–799. doi: 10.1084/jem.20131224. PubMed DOI PMC
Shyu W, Lin S, Yen P, Su C, Chen D, Wang H, Li H. Stromal cell-derived factor-1 alpha promotes neuroprotection, angiogenesis, and mobilization/homing of bone marrow-derived cells in stroke rats. J Pharmacol Exp Ther. 2008;324(2):834–849. doi: 10.1124/jpet.107.127746. PubMed DOI
Nishiyama A. Polydendrocytes: NG2 cells with many roles in development and repair of the CNS. Neuroscientist. 2007;13(1):62–76. doi: 10.1177/1073858406295586. PubMed DOI
Calver A, Hall A, Yu W, Walsh F, Heath J, Betsholtz C, Richardson W. Oligodendrocyte population dynamics and the role of PDGF in vivo. Neuron. 1998;20(5):869–882. doi: 10.1016/S0896-6273(00)80469-9. PubMed DOI
Hu J, Fu S, Wang Y, Li Y, Jiang X, Wang X, Qiu M, Lu P, Xu X. Platelet-derived growth factor-AA mediates oligodendrocyte lineage differentiation through activation of extracellular signal-regulated kinase signaling pathway. Neuroscience. 2008;151(1):138–147. doi: 10.1016/j.neuroscience.2007.10.050. PubMed DOI
Armstrong R, Harvath L, Dubois-Dalcq M. Type 1 astrocytes and oligodendrocyte-type 2 astrocyte glial progenitors migrate toward distinct molecules. J Neurosci Res. 1990;27(3):400–407. doi: 10.1002/jnr.490270319. PubMed DOI
Woodruff R, Fruttiger M, Richardson W, Franklin R. Platelet-derived growth factor regulates oligodendrocyte progenitor numbers in adult CNS and their response following CNS demyelination. Mol Cell Neurosci. 2004;25(2):252–262. doi: 10.1016/j.mcn.2003.10.014. PubMed DOI
Derringer K, Linden R. Vascular endothelial growth factor, fibroblast growth factor 2, platelet derived growth factor and transforming growth factor beta released in human dental pulp following orthodontic force. Arch Oral Biol. 2004;49(8):631–641. doi: 10.1016/j.archoralbio.2004.02.011. PubMed DOI
Tran-Hung L, Laurent P, Camps J, About I. Quantification of angiogenic growth factors released by human dental cells after injury. Arch Oral Biol. 2008;53(1):9–13. doi: 10.1016/j.archoralbio.2007.07.001. PubMed DOI
Vora P, Pillai P, Mustapha J, Kowal C, Shaffer S, Bose R, Namaka M, Frost E. CXCL1 regulation of oligodendrocyte progenitor cell migration is independent of calcium signaling. Exp Neurol. 2012;236(2):259–267. doi: 10.1016/j.expneurol.2012.04.012. PubMed DOI
Vora P, Pillai P, Zhu W, Mustapha J, Namaka M, Frost E. Differential effects of growth factors on oligodendrocyte progenitor migration. Eur J Cell Biol. 2011;90(8):649–656. doi: 10.1016/j.ejcb.2011.03.006. PubMed DOI
Murtie J, Zhou Y-X, Le T, Vana A, Armstrong R. PDGF and FGF2 pathways regulate distinct oligodendrocyte lineage responses in experimental demyelination with spontaneous remyelination. Neurobiol Dis. 2005;19:171–182. doi: 10.1016/j.nbd.2004.12.006. PubMed DOI
Redwine J, Blinder K, Armstrong R. In situ expression of fibroblast growth factor receptors by oligodendrocyte progenitors and oligodendrocytes in adult mouse central nervous system. J Neurosci Res. 1997;50(2):229–237. doi: 10.1002/(SICI)1097-4547(19971015)50:2<229::AID-JNR11>3.0.CO;2-3. PubMed DOI
Bloom F. Neurotransmission and the central nervous system. In: Hardman J, Limbird L, Molinoff P, Ruddon R, Gilman A, editors. Goodman and Gilman’s the pharmacological basis of therapeutics. 9. New York: McGraw-Hill; 1996. pp. 267–294.
Boyd J, Gordon T. Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury. Mol Neurobiol. 2003;27(3):277–324. doi: 10.1385/MN:27:3:277. PubMed DOI
Glass D, Yancopolous G. The neurotrophins and their receptors. Trends Cell Biol. 1993;3(8):262–268. doi: 10.1016/0962-8924(93)90054-5. PubMed DOI
Harvey A, Lovett S, Majda B, Yoon J, Wheeler L, Hodgetts S. Neurotrophic factors for spinal cord repair: which, where, how and when to apply, and for what period of time? Brain Res. 2015;1619:36–71. doi: 10.1016/j.brainres.2014.10.049. PubMed DOI
Pellitteri R, Russo A, Stanzani S. Schwann cell: a source of neurotrophic activity on cortical glutamatergic neurons in culture. Brain Res. 2006;1069(1):139–144. doi: 10.1016/j.brainres.2005.11.049. PubMed DOI
Frostick S, Yin Q, Kemp G. Schwann cells, neurotrophic factors, and peripheral nerve regeneration. Microsurgery. 1998;18(7):397–405. doi: 10.1002/(SICI)1098-2752(1998)18:7<397::AID-MICR2>3.0.CO;2-F. PubMed DOI
Bianco J, Perry C, Harkin D, Mackay-Sim A, Féron F. Neurotrophin 3 promotes purification and proliferation of olfactory ensheathing cells from human nose. Glia. 2004;45(2):111–123. doi: 10.1002/glia.10298. PubMed DOI
Lipson A, Widenfalk J, Lindqvist E, Ebendal T, Olson L. Neurotrophic properties of olfactory ensheathing glia. Exp Neurol. 2003;180(2):167–171. doi: 10.1016/S0014-4886(02)00058-4. PubMed DOI
Woodhall E, West A, Chuah M. Cultured olfactory ensheathing cells express nerve growth factor, brain-derived neurotrophic factor, glia cell line-derived neurotrophic factor and their receptors. Brain Res Mol Brain Res. 2001;88(1–2):203–213. doi: 10.1016/S0169-328X(01)00044-4. PubMed DOI
Takuma K, Baba A, Matsuda T. Astrocyte apoptosis: implications for neuroprotection. Prog Neurobiol. 2004;72(2):111–127. doi: 10.1016/j.pneurobio.2004.02.001. PubMed DOI
Nosrat C, Fried K, Ebendal T, Olson L. NGF, BDNF, NT3, NT4 and GDNF in tooth development. Eur J Oral Sci. 1998;106(S1):94–99. doi: 10.1111/j.1600-0722.1998.tb02158.x. PubMed DOI
Luukko K. Neuronal cells and neurotrophins in odontogenesis. Eur J Oral Sci. 1998;106(S1):80–93. doi: 10.1111/j.1600-0722.1998.tb02157.x. PubMed DOI
Nosrat I, Widenfalk J, Olson L, Nosrat C. Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord injury. Dev Biol. 2001;238(1):120–132. doi: 10.1006/dbio.2001.0400. PubMed DOI
Baloh R, Enomoto H, Johnson E, Milbrandt J. The GDNF family ligands and receptors—implications for neural development. Curr Opin Neurobiol. 2000;10(1):103–110. doi: 10.1016/S0959-4388(99)00048-3. PubMed DOI
Nosrat I, Seiger A, Olson L, Nosrat C. Expression patterns of neurotrophic factor mRNAs in developing human teeth. Cell Tissue Res. 2002;310(2):177–187. doi: 10.1007/s00441-002-0618-8. PubMed DOI
de Almeida J, Chen P, Henry M, Diogenes A. Stem cells of the apical papilla regulate trigeminal neurite outgrowth and targeting through a BDNF-dependent mechanism. Tissue Eng Part A. 2014;20(23–24):3089–3100. doi: 10.1089/ten.tea.2013.0347. PubMed DOI PMC
Esmaeili A, Alifarja S, Nourbakhsh N, Talebi A. Messenger RNA expression patterns of neurotrophins during transdifferentiation of stem cells from human-exfoliated deciduous teeth into neural-like cells. Avicenna J Med Biotechnol. 2014;6(1):21–26. PubMed PMC
Linker R, Gold R, Luhder F. Function of neurotrophic factors beyond the nervous system: inflammation and autoimmune demyelination. Crit Rev Immunol. 2009;29(1):43–68. doi: 10.1615/CritRevImmunol.v29.i1.20. PubMed DOI
Held K, Lane T. Spinal cord injury, immunodepression, and antigenic challenge. Semin Immunol. 2014;26(5):415–420. doi: 10.1016/j.smim.2014.03.003. PubMed DOI PMC
Tysseling V, Mithal D, Sahni V, Birch D, Jung H, Belmadani A, Miller R, Kessler J. SDF1 in the dorsal corticospinal tract promotes CXCR4+ cell migration after spinal cord injury. J Neuroinflammation. 2011;8:16. doi: 10.1186/1742-2094-8-16. PubMed DOI PMC
He W, Qu T, Yu Q, Wang Z, Lv H, Zhang J, Zhao X, Wang P. LPS induces IL-8 expression through TLR4, MyD88, NF-kappaB and MAPK pathways in human dental pulp stem cells. Int Endod J. 2013;46(2):128–136. doi: 10.1111/j.1365-2591.2012.02096.x. PubMed DOI
Heiman A, Pallottie A, Heary R, Elkabes S. Toll-like receptors in central nervous system injury and disease: a focus on the spinal cord. Brain Behav Immun. 2014;42:232–245. doi: 10.1016/j.bbi.2014.06.203. PubMed DOI
Guth L, Zhang Z, DiProspero N, Joubin K, Fitch M. Spinal cord injury in the rat: treatment with bacterial lipopolysaccharide and indomethacin enhances cellular repair and locomotor function. Exp Neurol. 1994;126(1):76–87. doi: 10.1006/exnr.1994.1043. PubMed DOI
Vallières N, Berard J, David S, Lacroix S. Systemic injections of lipopolysaccharide accelerates myelin phagocytosis during Wallerian degeneration in the injured mouse spinal cord. Glia. 2006;53(1):103–113. doi: 10.1002/glia.20266. PubMed DOI
Tomic S, Djokic J, Vasilijic S, Vucevic D, Todorovic V, Supic G, Colic M. Immunomodulatory properties of mesenchymal stem cells derived from dental pulp and dental follicle are susceptible to activation by toll-like receptor agonists. Stem Cells Dev. 2011;20(4):695–708. doi: 10.1089/scd.2010.0145. PubMed DOI
McGeachy M, Bak-Jensen K, Chen Y, Tato C, Blumenschein W, McClanahan T, Cua D. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol. 2007;8(12):1390–1397. doi: 10.1038/ni1539. PubMed DOI
Yi J, Wang D, Niu X, Hu J, Zhou Y, Li Z. MicroRNA-155 deficiency suppresses Th17 cell differentiation and improves locomotor recovery after spinal cord injury. Scand J Immunol. 2015;81(5):284–290. doi: 10.1111/sji.12276. PubMed DOI
Pierdomenico L, Bonsi L, Calvitti M, Rondelli D, Arpinati M, Chirumbolo G, Becchetti E, Marchionni C, Alviano F, Fossati V, Staffolani N, Franchina M, Grossi A, Bagnara G. Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation. 2005;80(6):836–842. doi: 10.1097/01.tp.0000173794.72151.88. PubMed DOI
Wada N, Menicanin D, Shi S, Bartold P, Gronthos S. Immunomodulatory properties of human periodontal ligament stem cells. J Cell Physiol. 2009;219(3):667–676. doi: 10.1002/jcp.21710. PubMed DOI
Yamaza T, Kentaro A, Chen C, Liu Y, Shi Y, Gronthos S, Wang S, Shi S. Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Res Ther. 2010;1(1):5. doi: 10.1186/scrt5. PubMed DOI PMC
Mita T, Furukawa-Hibi Y, Takeuchi H, Hattori H, Yamada K, Hibi H, Ueda M, Yamamoto A. Conditioned medium from the stem cells of human dental pulp improves cognitive function in a mouse model of Alzheimer’s disease. Behav Brain Res. 2015;293:189–197. doi: 10.1016/j.bbr.2015.07.043. PubMed DOI
Soleymaninejadian E, Pramanik K, Samadian E. Immunomodulatory properties of mesenchymal stem cells: cytokines and factors. Am J Reprod Immunol. 2012;67(1):1–8. doi: 10.1111/j.1600-0897.2011.01069.x. PubMed DOI
Wada N, Gronthos S, Bartold P. Immunomodulatory effects of stem cells. Periodontol 2000. 2013;63(1):198–216. doi: 10.1111/prd.12024. PubMed DOI
Liu D, Xu J, Liu O, Fan Z, Liu Y, Wang F, Ding G, Wei F, Zhang C, Wang S. Mesenchymal stem cells derived from inflamed periodontal ligaments exhibit impaired immunomodulation. J Clin Periodontol. 2012;39(12):1174–1182. doi: 10.1111/jcpe.12009. PubMed DOI
Yazid F, Gnanasegaran N, Kunasekaran W, Govindasamy V, Musa S. Comparison of immunodulatory properties of dental pulp stem cells derived from healthy and inflamed teeth. Clin Oral Invest. 2014;18(9):2103–2112. doi: 10.1007/s00784-014-1207-4. PubMed DOI
Kim J, Park J, Kim S, Im G, Kim B, Lee J, Choi E, Song J, Cho K, Kim C. Treatment of FGF-2 on stem cells from inflamed dental pulp tissue from human deciduous teeth. Oral Dis. 2014;20(2):191–204. doi: 10.1111/odi.12089. PubMed DOI
Hall E, Springer J. Neuroprotection and acute spinal cord injury: a reappraisal. NeuroRx. 2004;1(1):80–100. doi: 10.1602/neurorx.1.1.80. PubMed DOI PMC
Beattie M. Inflammation and apoptosis: linked therapeutic targets in spinal cord injury. Trends Mol Med. 2004;10(12):580–583. doi: 10.1016/j.molmed.2004.10.006. PubMed DOI
Nosrat I, Smith C, Mullally P, Olson L, Nosrat C. Dental pulp cells provide neurotrophic support for dopaminergic neurons and differentiate into neurons in vitro; implications for tissue engineering and repair in the nervous system. Eur J Neurosci. 2004;19(9):2388–2398. doi: 10.1111/j.0953-816X.2004.03314.x. PubMed DOI
Apel C, Forlenza O, de Paula V, Talib L, Denecke B, Eduardo C, Gattaz W. The neuroprotective effect of dental pulp cells in models of Alzheimer’s and Parkinson’s disease. J Neural Transm. 2009;116(1):71–78. doi: 10.1007/s00702-008-0135-3. PubMed DOI
Nesti C, Pardini C, Barachini S, D’Alessandro D, Siciliano G, Murri L, Petrini M, Vaglini F. Human dental pulp stem cells protect mouse dopaminergic neurons against MPP+ or rotenone. Brain Res. 2011;1367:94–102. doi: 10.1016/j.brainres.2010.09.042. PubMed DOI
Gnecchi M, He H, Liang O, Melo L, Morello F, Mu H, Noiseux N, Zhang L, Pratt R, Ingwall J, Dzau V. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med. 2005;11(4):267–268. doi: 10.1038/nm0405-367. PubMed DOI
Song M, Jue S, Cho Y, Kim E. Comparison of the effects of human dental pulp stem cells and human bone marrow-derived mesenchymal stem cells on ischemic human astrocytes in vitro. J Neurosci Res. 2015;93(6):973–983. doi: 10.1002/jnr.23569. PubMed DOI
Yamagata M, Yamamoto A, Kako E, Kaneko N, Matsubara K, Sakai K, Sawamoto K, Ueda M. Human dental pulp-derived stem cells protect against hypoxic-ischemic brain injury in neonatal mice. Stroke. 2013;44(2):551–554. doi: 10.1161/STROKEAHA.112.676759. PubMed DOI
Alizadeh A, Dyck S, Karimi-Abdolrezaee S. Myelin damage and repair in pathologic CNS: challenges and prospects. Front Mol Neurosci. 2015;8:35. doi: 10.3389/fnmol.2015.00035. PubMed DOI PMC
Sakai K, Yamamoto A, Matsubara K, Nakamura S, Naruse M, Yamagata M, Sakamoto K, Tauchi R, Wakao N, Imagama S, Hibi H, Kadomatsu K, Ishiguro N, Ueda M. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Investig. 2012;122(1):80–90. PubMed PMC
Yamamoto A, Sakai K, Matsubara K, Kano F, Ueda M. Multifaceted neuro-regenerative activities of human dental pulp stem cells for functional recovery after spinal cord injury. Neurosci Res. 2014;78:16–20. doi: 10.1016/j.neures.2013.10.010. PubMed DOI
Sandner B, Prang P, Rivera F, Aigner L, Blesch A, Weidner N. Neural stem cells for spinal cord repair. Cell Tissue Res. 2012;349(1):349–362. doi: 10.1007/s00441-012-1363-2. PubMed DOI
Lang J, Maeda Y, Bannerman P, Xu J, Horiuchi M, Pleasure D, Guo F. Adenomatous polyposis coli regulates oligodendroglial development. J Neurosci. 2013;33(7):3113–3130. doi: 10.1523/JNEUROSCI.3467-12.2013. PubMed DOI PMC
Matsubara K, Matsushita Y, Sakai K, Kano F, Kondo M, Noda M, Hashimoto N, Imagama S, Ishiguro N, Suzumura A, Ueda M, Furukawa K, Yamamoto A. Secreted ectodomain of sialic acid-binding Ig-like lectin-9 and monocyte chemoattractant protein-1 promote recovery after rat spinal cord injury by altering macrophage polarity. J Neurosci. 2015;35(6):2452–2464. doi: 10.1523/JNEUROSCI.4088-14.2015. PubMed DOI PMC
Houenou L, Oppenheim R, Li L, Lo A, Prevette D. Regulation of spinal motoneuron survival by GDNF during development and following injury. Cell Tissue Res. 1996;286(2):219–223. doi: 10.1007/s004410050690. PubMed DOI
Ramer M, Priestley J, McMahon S. Functional regeneration of sensory axons into the adult spinal cord. Nature. 2000;403(6767):312–316. doi: 10.1038/35002084. PubMed DOI
De Berdt P, Vanacker J, Ucakar B, Elens L, Diogenes A, Leprince J, Deumens R, des Rieux A. Dental apical papilla as therapy for spinal cord injury. J Dent Res. 2015;94(11):1575–1581. doi: 10.1177/0022034515604612. PubMed DOI
Tummers M, Thesleff I. Root or crown: a developmental choice orchestrated by the differential regulation of the epithelial stem cell niche in the tooth of two rodent species. Development. 2003;130(6):1049–1057. doi: 10.1242/dev.00332. PubMed DOI
Ma D, Ma Z, Zhang X, Wang W, Yang Z, Zhang M, Wu G, Lu W, Deng Z, Jin Y. Effect of age and extrinsic microenvironment on the proliferation and osteogenic differentiation of rat dental pulp stem cells in vitro. J Endod. 2009;35(11):1546–1553. doi: 10.1016/j.joen.2009.07.016. PubMed DOI
Zhang J, An Y, Gao L, Zhang Y, Jin Y, Chen F. The effect of aging on the pluripotential capacity and regenerative potential of human periodontal ligament stem cells. Biomaterials. 2012;33(29):6974–6986. doi: 10.1016/j.biomaterials.2012.06.032. PubMed DOI
Ding G, Wang W, Liu Y, An Y, Zhang C, Shi S, Wang S. Effect of cryopreservation on biological and immunological properties of stem cells from apical papilla. J Cell Physiol. 2010;223(2):415–422. PubMed
Ma L, Makino Y, Yamaza H, Akiyama K, Hoshino Y, Song G, Kukita T, Nonaka K, Shi S, Yamaza T. Cryopreserved dental pulp tissues of exfoliated deciduous teeth is a feasible stem cell resource for regenerative medicine. PLoS One. 2012;7(12):e51777. doi: 10.1371/journal.pone.0051777. PubMed DOI PMC
Seo B, Miura M, Sonoyama W, Coppe C, Stanyon R, Shi S. Recovery of stem cells from cryopreserved periodontal ligament. J Dent Res. 2005;84(10):907–912. doi: 10.1177/154405910508401007. PubMed DOI
Lee S, Chiang P, Tsai Y, Tsai S, Jeng J, Kawata T, Huang H. Effects of cryopreservation of intact teeth on the isolated dental pulp stem cells. J Endod. 2010;36(8):1336–1340. doi: 10.1016/j.joen.2010.04.015. PubMed DOI
Lindemann D, Werle S, Steffens D, Garcia-Godoy F, Pranke P, Casagrande L. Effects of cryopreservation on the characteristics of dental pulp stem cells of intact deciduous teeth. Arch Oral Biol. 2014;59(9):970–976. doi: 10.1016/j.archoralbio.2014.04.008. PubMed DOI
Chen Y, Huang A, Chan A, Shieh T, Lin L. Human dental pulp stem cells derived from different cryopreservation methods of human dental pulp tissues of diseased teeth. J Oral Pathol Med. 2011;40(10):793–800. doi: 10.1111/j.1600-0714.2011.01040.x. PubMed DOI PMC
Perry B, Zhou D, Wu X, Yang F, Byers M, Chu T, Hockema J, Woods E, Goebel W. Collection, cryopreservation, and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use. Tissue Eng Part C Methods. 2008;14(2):149–156. doi: 10.1089/ten.tec.2008.0031. PubMed DOI PMC
Briquet A, Halleux A, Lechanteur C, Beguin Y. Neuropeptides to replace serum in cryopreservation of mesenchymal stromal cells? Cytotherapy. 2013;15(11):1385–1394. doi: 10.1016/j.jcyt.2013.06.012. PubMed DOI
Luetzkendorf J, Nerger K, Hering J, Moegel A, Hoffmann K, Hoefers C, Mueller-Tidow C, Mueller L. Cryopreservation does not alter main characteristics of good manufacturing process-grade human multipotent mesenchymal stromal cells including immunomodulating potential and lack of malignant transformation. Cytotherapy. 2015;17(2):186–198. doi: 10.1016/j.jcyt.2014.10.018. PubMed DOI
Lizier N, Kerkis A, Gomes C, Hebling J, Oliveira C, Caplan A, Kerkis I. Scaling-up of dental pulp stem cells isolated from multiple niches. PLoS One. 2012;7(6):e39885. doi: 10.1371/journal.pone.0039885. PubMed DOI PMC
Broxmeyer H, Srour E, Hangoc G, Cooper S, Anderson S, Bodine D. High-efficiency recovery of functional hematopoietic progenitor and stem cells from human cord blood cryopreserved for 15 years. Proc Natl Acad Sci. 2003;100(2):645–650. doi: 10.1073/pnas.0237086100. PubMed DOI PMC
Winter J, Jacobson P, Bullough B, Christensen A, Boyer M, Reems J. Long-term effects of cryopreservation on clinically prepared hematopoietic progenitor cell products. Cytotherapy. 2014;16(7):965–975. doi: 10.1016/j.jcyt.2014.02.005. PubMed DOI
Gioventù S, Andriolo G, Bonino F, Frasca S, Lazzari L, Montelatici E, Santoro F, Rebulla P. A novel method for banking dental pulp stem cells. Transfus Apheres Sci. 2012;47(2):199–206. doi: 10.1016/j.transci.2012.06.005. PubMed DOI
Lin S, Chang W, Lin C, Hsieh S, Lee S, Fan K, Lin C, Huang H. Static magnetic field increases survival rate of dental pulp stem cells during DMSO-free cryopreservation. Electromagn Biol Med. 2015;34(4):302–308. doi: 10.3109/15368378.2014.919588. PubMed DOI
Kumar A, Bhattacharyya S, Rattan V. Effect of uncontrolled freezing on biological characteristics of human dental pulp stem cells. Cell Tissue Bank. 2015;16(4):513–522. doi: 10.1007/s10561-015-9498-5. PubMed DOI
Yong K, Wan Safwani W, Xu F, Wan Abas W, Choi J, Pingguan-Murphy B. Cryopreservation of human mesenchymal stem cells for clinical applications: current methods and challenges. Biopreserv Biobank. 2015;13(4):231–239. doi: 10.1089/bio.2014.0104. PubMed DOI
Watanabe S, Uchida K, Nakajima H, Matsuo H, Sugita D, Yoshida A, Honjoh K, Johnson W, Baba H. Early transplantation of mesenchymal stem cells after spinal cord injury relieves pain hypersensitivity through suppression of pain-related signaling cascades and reduced inflammatory cell recruitment. Stem Cells. 2015;33(6):1902–1914. doi: 10.1002/stem.2006. PubMed DOI
Lee H, Lee H, Yun Y, Kim J, Ha Y, Yoon do H, Lee S, Shin D. Human adipose stem cells improve mechanical allodynia and enhance functional recovery in a rat model of neuropathic pain. Tissue Eng Part A. 2015;21(13–14):2044–2052. doi: 10.1089/ten.tea.2014.0713. PubMed DOI
Roh D, Seo M, Choi H, Park S, Han H, Beitz A, Kang K, Lee J. Transplantation of human umbilical cord blood or amniotic epithelial stem cells alleviates mechanical allodynia after spinal cord injury in rats. Cell Transplant. 2013;22(9):1577–1590. doi: 10.3727/096368912X659907. PubMed DOI
Hofstetter C, Holmström N, Lilja J, Schweinhardt P, Hao J, Spenger C, Wiesenfeld-Hallin Z, Kurpad S, Frisén J, Olson L. Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat Neurosci. 2005;8(3):346–353. doi: 10.1038/nn1405. PubMed DOI
Macias M, Syring M, Pizzi M, Crowe M, Alexanian A, Kurpad S. Pain with no gain: allodynia following neural stem cell transplantation in spinal cord injury. Exp Neurol. 2006;201(2):335–348. doi: 10.1016/j.expneurol.2006.04.035. PubMed DOI
Davies J, Pröschel C, Zhang N, Noble M, Mayer-Pröschel M, Davies S. Transplanted astrocytes derived from BMP- or CNTF-treated glial-restricted precursors have opposite effects on recovery and allodynia after spinal cord injury. J Biol. 2008;7(7):24. doi: 10.1186/jbiol85. PubMed DOI PMC
Christensen M, Hulsebosch C. Spinal cord injury and anti-NGF treatment results in changes in CGRP density and distribution in the dorsal horn in the rat. Exp Neurol. 1997;147(2):463–475. doi: 10.1006/exnr.1997.6608. PubMed DOI
Romero M, Rangappa N, Li L, Lightfoot E, Garry M, Smith G. Extensive sprouting of sensory afferents and hyperalgesia induced by conditional expression of nerve growth factor in the adult spinal cord. J Neurosci. 2000;20(12):4435–4445. PubMed PMC
Tang X, Heron P, Mashburn C, Smith G. Targeting sensory axon regeneration in adult spinal cord. J Neurosci. 2007;27(22):6068–6078. doi: 10.1523/JNEUROSCI.1442-07.2007. PubMed DOI PMC
Krenz N, Weaver L. Nerve growth factor in glia and inflammatory cells of the injured rat spinal cord. J Neurochem. 2000;74(2):730–739. doi: 10.1046/j.1471-4159.2000.740730.x. PubMed DOI
Brown A, Ricci M, Weaver L. NGF message and protein distribution in the injured rat spinal cord. Exp Neurol. 2004;188(1):115–127. doi: 10.1016/j.expneurol.2004.03.017. PubMed DOI
Deumens R, Joosten E, Waxman S, Hains B. Locomotor dysfunction and pain: the scylla and charybdis of fiber sprouting after spinal cord injury. Mol Neurobiol. 2008;37(1):52–63. doi: 10.1007/s12035-008-8016-1. PubMed DOI
Yao Z, Sun X, Li P, Liu H, Wu H, Xi Z, Zheng Z. Neural stem cells transplantation alleviate the hyperalgesia of spinal cord injured (SCI) associated with down-regulation of BDNF. Int J Clin Exp Med. 2015;8(1):404–412. PubMed PMC
Luo Y, Zou Y, Yang L, Liu J, Liu S, Liu J, Zhou X, Zhang W, Wang T. Transplantation of NSCs with OECs alleviates neuropathic pain associated with NGF downregulation in rats following spinal cord injury. Neurosci Lett. 2013;549:103–108. doi: 10.1016/j.neulet.2013.06.005. PubMed DOI
Coull J, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter M, De Koninck Y. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature. 2005;438(7070):1017–1021. doi: 10.1038/nature04223. PubMed DOI
Boulenguez P, Liabeuf S, Bos R, Bras H, Jean-Xavier C, Brocard C, Stil A, Darbon P, Cattaert D, Delpire E, Marsala M, Vinay L. Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury. Nat Med. 2012;16(3):302–307. doi: 10.1038/nm.2107. PubMed DOI
Hasbargen T, Ahmed M, Miranpuri G, Li L, Kahle K, Resnick D, Sun D. Role of NKCC1 and KCC2 in the development of chronic neuropathic pain following spinal cord injury. Ann N Y Acad Sci. 2010;1198:168–172. doi: 10.1111/j.1749-6632.2010.05462.x. PubMed DOI
Berger J, Knaepen L, Janssen S, Jaken R, Marcus M, Joosten E, Deumens R. Cellular and molecular insights into neuropathy-induced pain hypersensitivity for mechanism-based treatment approaches. Brain Res Rev. 2011;67(1–2):282–310. doi: 10.1016/j.brainresrev.2011.03.003. PubMed DOI
Rycaj K, Tang D. Cell-of-origin of cancer versus cancer stem cells: assays and interpretations. Cancer Res. 2015;75(19):4003–4011. doi: 10.1158/0008-5472.CAN-15-0798. PubMed DOI PMC
Miura M, Miura Y, Padilla-Nash H, Molinolo A, Fu B, Patel V, Seo B, Sonoyama W, Zheng J, Baker C, Chen W, Ried T, Shi S. Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells. 2006;24(4):1095–1103. doi: 10.1634/stemcells.2005-0403. PubMed DOI
Pan Q, Fouraschen S, de Ruiter P, Dinjens W, Kwekkeboom J, Tilanus H, van der Laan L. Detection of spontaneous tumorigenic transformation during culture expansion of human mesenchymal stromal cells. Exp Biol Med. 2014;239(1):105–115. doi: 10.1177/1535370213506802. PubMed DOI
Nguyen H, Ravid K. Tetraploidy/aneuploidy and stem cells in cancer promotion: the role of chromosome passenger proteins. J Cell Physiol. 2006;208(1):12–22. doi: 10.1002/jcp.20565. PubMed DOI
Roemeling-van Rhijn M, de Klein A, Douben H, Pan Q, van der Laan L, Ijzermans J, Betjes M, Baan C, Weimar W, Hoogduijn M. Culture expansion induces non-tumorigenic aneuploidy in adipose tissue-derived mesenchymal stromal cells. Cytotherapy. 2013;15(11):1352–1361. doi: 10.1016/j.jcyt.2013.07.004. PubMed DOI
Duailibi M, Kulikowski L, Duailibi S, Lipay M, Melaragno M, Ferreira L, Vacanti J, Yelick P. Cytogenetic instability of dental pulp stem cell lines. J Mol Histol. 2012;43(1):89–94. doi: 10.1007/s10735-011-9373-z. PubMed DOI
Suchánek J, Soukup T, Ivancaková R, Karbanová J, Hubková V, Pytlík R, Kucerová L. Human dental pulp stem cells-isolation and long term cultivation. Acta Medica (Hradec Králové) 2007;50(3):195–201. PubMed
Suchánek J, Visek B, Soukup T, El-Din Mohamed S, Ivancaková R, Mokrỳ J, Aboul-Ezz E, Omran A. Stem cells from human exfoliated deciduous teeth-isolation, long term cultivation and phenotypical analysis. Acta Medica (Hradec Králové) 2010;53(2):93–99. PubMed
Crowder S, Horton L, Lee S, McClain C, Hawkins O, Palmer A, Bae H, Richmond A, Sung H. Passage-dependent cancerous transformation of human mesenchymal stem cells under carcinogenic hypoxia. FASEB J. 2013;27(7):2788–2798. doi: 10.1096/fj.13-228288. PubMed DOI PMC
Barkholt L, Flory E, Jekerle V, Lucas-Samuel S, Ahnert P, Bisset L, Büscher D, Fibbe W, Foussat A, Kwa M, Lantz O, Mačiulaitis R, Palomäki T, Schneider C, Sensebé L, Tachdjian G, Tarte K, Tosca L, Salmikangas P. Risk of tumorigenicity in mesenchymal stromal cell-based therapies-bridging scientific observations and regulatory viewpoints. Cytotherapy. 2013;15(7):753–759. doi: 10.1016/j.jcyt.2013.03.005. PubMed DOI
Yoon H, Min J, Shin N, Kim Y, Kim J, Hwang Y, Suh J, Hwang O, Jeon S. Are human dental papilla-derived stem cell and human brain-derived neural stem cell transplantations suitable for treatment of Parkinson’s disease? Neural Regen Res. 2013;8(13):1190–1200. PubMed PMC
Grimm W-D, Arnold W, Becher S, Dannan A, Gassmann G, Philippou S, Dittmar T, Varga G. Does the chronically inflamed periodontium harbour cancer stem cells? In: Dittmar T, Zänker K, editors. Stem cell biology in health and disease. Dordrecht: Springe; 2009. pp. 251–279.
Weinberg M, Bral M. Laboratory animal models in periodontology. J Clin Periodontol. 1999;26(6):335–340. doi: 10.1034/j.1600-051X.1999.260601.x. PubMed DOI
Li Y, Li D, Raisman G (2015) Functional repair of rat corticospinal tract lesions does not require permanent survival of an immuno-incompatible transplant. Cell Transplant (Epub ahead of print) PubMed
Harrington J, Sloan A, Waddington R. Quantification of clonal heterogeneity of mesenchymal progenitor cells in dental pulp and bone marrow. Connect Tissue Res. 2014;55(1):62–67. doi: 10.3109/03008207.2014.923859. PubMed DOI
Pisciotta A, Carnevale G, Meloni S, Riccio M, De Biasi S, Gibellini L, Ferrari A, Bruzzesi G, De Pol A. Human dental pulp stem cells (hDPSCs): isolation, enrichment and comparative differentiation of two sub-populations. BMC Dev Biol. 2015;15:14. doi: 10.1186/s12861-015-0065-x. PubMed DOI PMC
Hsu S, Huang G, Feng F. Isolation of the multipotent MSC subpopulation from human gingival fibroblasts by culturing on chitosan membranes. Biomaterials. 2012;33(9):2642–2655. doi: 10.1016/j.biomaterials.2011.12.032. PubMed DOI
Karamzadeh R, Eslaminejad M, Aflatoonian R. Isolation, characterization and comparative differentiation of human dental pulp stem cells derived from permanent teeth by using two different methods. J Vis Exp. 2012;69:e4372. PubMed PMC
Huang A, Chen Y, Chan A, Shieh T, Lin L. Isolation and characterization of human dental pulp stem/stromal cells from nonextracted crown-fractured teeth requiring root canal therapy. J Endod. 2009;35(5):673–681. doi: 10.1016/j.joen.2009.01.019. PubMed DOI