Mesenchymal Stem Cells Preserve Working Memory in the 3xTg-AD Mouse Model of Alzheimer's Disease
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26821012
PubMed Central
PMC4783886
DOI
10.3390/ijms17020152
PII: ijms17020152
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, Aβ*56, mesenchymal stem cells, neurogenesis, working memory,
- MeSH
- Alzheimerova nemoc patologie patofyziologie terapie MeSH
- amyloidní beta-protein metabolismus MeSH
- bludiště - učení fyziologie MeSH
- glutaminsynthetasa metabolismus MeSH
- krátkodobá paměť fyziologie MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- myši transgenní MeSH
- myši MeSH
- neurogeneze MeSH
- proliferace buněk MeSH
- transplantace mezenchymálních kmenových buněk metody MeSH
- ventriculi laterales cytologie patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- amyloidní beta-protein MeSH
- glutaminsynthetasa MeSH
The transplantation of stem cells may have a therapeutic effect on the pathogenesis and progression of neurodegenerative disorders. In the present study, we transplanted human mesenchymal stem cells (MSCs) into the lateral ventricle of a triple transgenic mouse model of Alzheimer's disease (3xTg-AD) at the age of eight months. We evaluated spatial reference and working memory after MSC treatment and the possible underlying mechanisms, such as the influence of transplanted MSCs on neurogenesis in the subventricular zone (SVZ) and the expression levels of a 56 kDa oligomer of amyloid β (Aβ*56), glutamine synthetase (GS) and glutamate transporters (Glutamate aspartate transporter (GLAST) and Glutamate transporter-1 (GLT-1)) in the entorhinal and prefrontal cortices and the hippocampus. At 14 months of age we observed the preservation of working memory in MSC-treated 3xTg-AD mice, suggesting that such preservation might be due to the protective effect of MSCs on GS levels and the considerable downregulation of Aβ*56 levels in the entorhinal cortex. These changes were observed six months after transplantation, accompanied by clusters of proliferating cells in the SVZ. Since the grafted cells did not survive for the whole experimental period, it is likely that the observed effects could have been transiently more pronounced at earlier time points than at six months after cell application.
Zobrazit více v PubMed
Blurton-Jones M., Laferla F.M. Pathways by which Aβ facilitates tau pathology. Curr. Alzheimer Res. 2006;3:437–448. doi: 10.2174/156720506779025242. PubMed DOI
Hardy J., Selkoe D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science. 2002;297:353–356. doi: 10.1126/science.1072994. PubMed DOI
Nistico R., Pignatelli M., Piccinin S., Mercuri N.B., Collingridge G. Targeting synaptic dysfunction in Alzheimer’s disease therapy. Mol. Neurobiol. 2012;46:572–587. doi: 10.1007/s12035-012-8324-3. PubMed DOI
Pozueta J., Lefort R., Shelanski M.L. Synaptic changes in Alzheimer’s disease and its models. Neuroscience. 2013;251:51–65. doi: 10.1016/j.neuroscience.2012.05.050. PubMed DOI
Pratico D., Trojanowski J.Q. Inflammatory hypotheses: Novel mechanisms of Alzheimer’s neurodegeneration and new therapeutic targets? Neurobiol. Aging. 2000;21:441–445; discussion 451–443. doi: 10.1016/S0197-4580(00)00141-X. PubMed DOI
Dantuma E., Merchant S., Sugaya K. Stem cells for the treatment of neurodegenerative diseases. Stem Cell Res. Ther. 2010;1 doi: 10.1186/scrt37. PubMed DOI PMC
Lee H.J., Lee J.K., Lee H., Carter J.E., Chang J.W., Oh W., Yang Y.S., Suh J.G., Lee B.H., Jin H.K., et al. Human umbilical cord blood-derived mesenchymal stem cells improve neuropathology and cognitive impairment in an Alzheimer’s disease mouse model through modulation of neuroinflammation. Neurobiol. Aging. 2012;33:588–602. doi: 10.1016/j.neurobiolaging.2010.03.024. PubMed DOI
Lee J.K., Jin H.K., Bae J.S. Bone marrow-derived mesenchymal stem cells reduce brain amyloid-β deposition and accelerate the activation of microglia in an acutely induced Alzheimer’s disease mouse model. Neurosci. Lett. 2009;450:136–141. doi: 10.1016/j.neulet.2008.11.059. PubMed DOI
Bae J.S., Jin H.K., Lee J.K., Richardson J.C., Carter J.E. Bone marrow-derived mesenchymal stem cells contribute to the reduction of amyloid-β deposits and the improvement of synaptic transmission in a mouse model of pre-dementia Alzheimer’s disease. Curr. Alzheimer Res. 2013;10:524–531. doi: 10.2174/15672050113109990027. PubMed DOI
Lee J.K., Jin H.K., Bae J.S. Bone marrow-derived mesenchymal stem cells attenuate amyloid β-induced memory impairment and apoptosis by inhibiting neuronal cell death. Curr. Alzheimer Res. 2010;7:540–548. doi: 10.2174/156720510792231739. PubMed DOI
Shin J.Y., Park H.J., Kim H.N., Oh S.H., Bae J.S., Ha H.J., Lee P.H. Mesenchymal stem cells enhance autophagy and increase β-amyloid clearance in Alzheimer disease models. Autophagy. 2014;10:32–44. doi: 10.4161/auto.26508. PubMed DOI PMC
Nikolic W.V., Hou H., Town T., Zhu Y., Giunta B., Sanberg C.D., Zeng J., Luo D., Ehrhart J., Mori T., et al. Peripherally administered human umbilical cord blood cells reduce parenchymal and vascular β-amyloid deposits in Azheimer mice. Stem Cells Dev. 2008;17:423–439. doi: 10.1089/scd.2008.0018. PubMed DOI PMC
Fan X., Sun D., Tang X., Cai Y., Yin Z.Q., Xu H. Stem-cell challenges in the treatment of Alzheimer’s disease: A long way from bench to bedside. Med. Res. Rev. 2014;34:957–978. doi: 10.1002/med.21309. PubMed DOI
Marei H.E., Farag A., Althani A., Afifi N., Ahmed A.E., Lashen S., Rezk S., Pallini R., Casalbore P., Cenciarelli C. Human olfactory bulb neural stem cells expressing hNGF restore cognitive deficit in Alzheimer’s disease rat model. J. Cell. Physiol. 2015;230:116–130. doi: 10.1002/jcp.24688. PubMed DOI
Ryu J.K., Cho T., Wang Y.T., McLarnon J.G. Neural progenitor cells attenuate inflammatory reactivity and neuronal loss in an animal model of inflamed AD brain. J. Neuroinflamm. 2009;6:39. doi: 10.1186/1742-2094-6-39. PubMed DOI PMC
Chen W.W., Blurton-Jones M. Concise review: Can stem cells be used to treat or model Alzheimer’s disease? Stem Cells. 2012;30:2612–2618. doi: 10.1002/stem.1240. PubMed DOI PMC
Blurton-Jones M., Kitazawa M., Martinez-Coria H., Castello N.A., Muller F.J., Loring J.F., Yamasaki T.R., Poon W.W., Green K.N., LaFerla F.M. Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc. Natl. Acad. Sci. USA. 2009;106:13594–13599. doi: 10.1073/pnas.0901402106. PubMed DOI PMC
Blurton-Jones M., Spencer B., Michael S., Castello N.A., Agazaryan A.A., Davis J.L., Muller F.J., Loring J.F., Masliah E., LaFerla F.M. Neural stem cells genetically-modified to express neprilysin reduce pathology in alzheimer transgenic models. Stem Cell Res. Ther. 2014;5:46. doi: 10.1186/scrt440. PubMed DOI PMC
Wu S., Sasaki A., Yoshimoto R., Kawahara Y., Manabe T., Kataoka K., Asashima M., Yuge L. Neural stem cells improve learning and memory in rats with Alzheimer’s disease. Pathobiology. 2008;75:186–194. doi: 10.1159/000124979. PubMed DOI
Zhang W., Wang G.M., Wang P.J., Zhang Q., Sha S.H. Effects of neural stem cells on synaptic proteins and memory in a mouse model of Alzheimer’s disease. J. Neurosci. Res. 2014;92:185–194. doi: 10.1002/jnr.23299. PubMed DOI
Zhang W., Wang P.J., Sha H.Y., Ni J., Li M.H., Gu G.J. Neural stem cell transplants improve cognitive function without altering amyloid pathology in an APP/PS1 double transgenic model of Alzheimer’s disease. Mol. Neurobiol. 2014;50:423–437. doi: 10.1007/s12035-014-8640-x. PubMed DOI
Forostyak S., Jendelova P., Kapcalova M., Arboleda D., Sykova E. Mesenchymal stromal cells prolong the lifespan in a rat model of amyotrophic lateral sclerosis. Cytotherapy. 2011;13:1036–1046. doi: 10.3109/14653249.2011.592521. PubMed DOI
Forostyak S., Jendelova P., Sykova E. The role of mesenchymal stromal cells in spinal cord injury, regenerative medicine and possible clinical applications. Biochimie. 2013;95:2257–2270. doi: 10.1016/j.biochi.2013.08.004. PubMed DOI
Laroni A., Novi G., Kerlero de Rosbo N., Uccelli A. Towards clinical application of mesenchymal stem cells for treatment of neurological diseases of the central nervous system. J. Neuroimmune Pharmacol. 2013;8:1062–1076. doi: 10.1007/s11481-013-9456-6. PubMed DOI
Oddo S., Caccamo A., Shepherd J.D., Murphy M.P., Golde T.E., Kayed R., Metherate R., Mattson M.P., Akbari Y., LaFerla F.M. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: Intracellular Aβ and synaptic dysfunction. Neuron. 2003;39:409–421. doi: 10.1016/S0896-6273(03)00434-3. PubMed DOI
Amemori T., Ermakova I.V., Buresova O., Zigova T., Racekova E., Bures J. Brain transplants enhance rather than reduce the impairment of spatial memory and olfaction in bulbectomized rats. Behav. Neurosci. 1989;103:61–70. doi: 10.1037/0735-7044.103.1.61. PubMed DOI
Sterniczuk R., Antle M.C., Laferla F.M., Dyck R.H. Characterization of the 3× Tg-AD mouse model of Alzheimer’s disease: Part 2. Behavioral and cognitive changes. Brain Res. 2010;1348:149–155. doi: 10.1016/j.brainres.2010.06.011. PubMed DOI
Lacor P.N., Buniel M.C., Furlow P.W., Clemente A.S., Velasco P.T., Wood M., Viola K.L., Klein W.L. Aβ oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J. Neurosci. 2007;27:796–807. doi: 10.1523/JNEUROSCI.3501-06.2007. PubMed DOI PMC
Lesne S., Koh M.T., Kotilinek L., Kayed R., Glabe C.G., Yang A., Gallagher M., Ashe K.H. A specific amyloid-β protein assembly in the brain impairs memory. Nature. 2006;440:352–357. doi: 10.1038/nature04533. PubMed DOI
Lesne S.E., Sherman M.A., Grant M., Kuskowski M., Schneider J.A., Bennett D.A., Ashe K.H. Brain amyloid-β oligomers in ageing and Alzheimer’s disease. Brain. 2013;136:1383–1398. doi: 10.1093/brain/awt062. PubMed DOI PMC
Reed M.N., Hofmeister J.J., Jungbauer L., Welzel A.T., Yu C., Sherman M.A., Lesne S., LaDu M.J., Walsh D.M., Ashe K.H., et al. Cognitive effects of cell-derived and synthetically derived Aβ oligomers. Neurobiol. Aging. 2011;32:1784–1794. doi: 10.1016/j.neurobiolaging.2009.11.007. PubMed DOI PMC
Ferreira S.T., Klein W.L. The Aβ oligomer hypothesis for synapse failure and memory loss in Alzheimer’s disease. Neurobiol. Learn. Mem. 2011;96:529–543. doi: 10.1016/j.nlm.2011.08.003. PubMed DOI PMC
Liu P., Kemper L.J., Wang J., Zahs K.R., Ashe K.H., Pasinetti G.M. Grape seed polyphenolic extract specifically decreases Aβ*56 in the brains of Tg2576 mice. J. Alzheimers Dis. 2011;26:657–666. doi: 10.1016/j.jalz.2010.05.1792. PubMed DOI
Scherzer-Attali R., Farfara D., Cooper I., Levin A., Ben-Romano T., Trudler D., Vientrov M., Shaltiel-Karyo R., Shalev D.E., Segev-Amzaleg N., et al. Naphthoquinone-tyrptophan reduces neurotoxic Aβ*56 levels and improves cognition in Alzheimer’s disease animal model. Neurobiol. Dis. 2012;46:663–672. doi: 10.1016/j.nbd.2012.03.005. PubMed DOI
Zahs K.R., Ashe K.H. β-amyloid oligomers in aging and Alzheimer’s disease. Front. Aging Neurosci. 2013;5:28. doi: 10.3389/fnagi.2013.00028. PubMed DOI PMC
Behrens P.F., Franz P., Woodman B., Lindenberg K.S., Landwehrmeyer G.B. Impaired glutamate transport and glutamate-glutamine cycling: Downstream effects of the huntington mutation. Brain. 2002;125:1908–1922. doi: 10.1093/brain/awf180. PubMed DOI
Coulter D.A., Eid T. Astrocytic regulation of glutamate homeostasis in epilepsy. Glia. 2012;60:1215–1226. doi: 10.1002/glia.22341. PubMed DOI PMC
Guo Y., Duan W., Li Z., Huang J., Yin Y., Zhang K., Wang Q., Zhang Z., Li C. Decreased GLT-1 and increased SOD1 and HO-1 expression in astrocytes contribute to lumbar spinal cord vulnerability of SOD1-G93A transgenic mice. FEBS Lett. 2010;584:1615–1622. doi: 10.1016/j.febslet.2010.03.025. PubMed DOI
Le Prince G., Delaere P., Fages C., Lefrancois T., Touret M., Salanon M., Tardy M. Glutamine synthetase (GS) expression is reduced in senile dementia of the alzheimer type. Neurochem. Res. 1995;20:859–862. doi: 10.1007/BF00969698. PubMed DOI
Minkeviciene R., Ihalainen J., Malm T., Matilainen O., Keksa-Goldsteine V., Goldsteins G., Iivonen H., Leguit N., Glennon J., Koistinaho J., et al. Age-related decrease in stimulated glutamate release and vesicular glutamate transporters in APP/PS1 transgenic and wild-type mice. J. Neurochem. 2008;105:584–594. doi: 10.1111/j.1471-4159.2007.05147.x. PubMed DOI
Robinson S.R. Neuronal expression of glutamine synthetase in Alzheimer’s disease indicates a profound impairment of metabolic interactions with astrocytes. Neurochem. Int. 2000;36:471–482. doi: 10.1016/S0197-0186(99)00150-3. PubMed DOI
Timmer N.M., Herbert M.K., Claassen J.A., Kuiperij H.B., Verbeek M.M. Total glutamine synthetase levels in cerebrospinal fluid of Alzheimer’s disease patients are unchanged. Neurobiol. Aging. 2015;36:1271–1273. doi: 10.1016/j.neurobiolaging.2014.12.010. PubMed DOI
Wilson J.M., Shaw C.A. Late appearance of glutamate transporter defects in a murine model of ALS-parkinsonism dementia complex. Neurochem. Int. 2007;50:1067–1077. doi: 10.1016/j.neuint.2006.09.017. PubMed DOI
Oddo S., Caccamo A., Kitazawa M., Tseng B.P., LaFerla F.M. Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol. Aging. 2003;24:1063–1070. doi: 10.1016/j.neurobiolaging.2003.08.012. PubMed DOI
Rohn T.T., Vyas V., Hernandez-Estrada T., Nichol K.E., Christie L.A., Head E. Lack of pathology in a triple transgenic mouse model of Alzheimer’s disease after overexpression of the anti-apoptotic protein Bcl-2. J. Neurosci. 2008;28:3051–3059. doi: 10.1523/JNEUROSCI.5620-07.2008. PubMed DOI PMC
Bobkova N.V., Poltavtseva R.A., Samokhin A.N., Sukhikh G.T. Therapeutic effect of mesenchymal multipotent stromal cells on memory in animals with Alzheimer-type neurodegeneration. Bull. Exp. Biol. Med. 2013;156:119–121. doi: 10.1007/s10517-013-2293-z. PubMed DOI
Chang K.A., Kim H.J., Joo Y., Ha S., Suh Y.H. The therapeutic effects of human adipose-derived stem cells in Alzheimer’s disease mouse models. Neurodegener. Dis. 2014;13:99–102. doi: 10.1159/000355261. PubMed DOI
Salem A.M., Ahmed H.H., Atta H.M., Ghazy M.A., Aglan H.A. Potential of bone marrow mesenchymal stem cells in management of Alzheimer’s disease in female rats. Cell Biol. Int. 2014;38:1367–1383. doi: 10.1002/cbin.10331. PubMed DOI
Yun H.M., Kim H.S., Park K.R., Shin J.M., Kang A.R., il Lee K., Song S., Kim Y.B., Han S.B., Chung H.M., et al. Placenta-derived mesenchymal stem cells improve memory dysfunction in an Aβ1–42-infused mouse model of Alzheimer’s disease. Cell Death Dis. 2013;4:e958. doi: 10.1038/cddis.2013.490. PubMed DOI PMC
Eichenbaum H., Stewart C., Morris R.G. Hippocampal representation in place learning. J. Neurosci. 1990;10:3531–3542. PubMed PMC
Buzsaki G., Moser E.I. Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat. Neurosci. 2013;16:130–138. doi: 10.1038/nn.3304. PubMed DOI PMC
Sasaki T., Leutgeb S., Leutgeb J.K. Spatial and memory circuits in the medial entorhinal cortex. Curr. Opin. Neurobiol. 2015;32:16–23. doi: 10.1016/j.conb.2014.10.008. PubMed DOI PMC
Huntley J.D., Howard R.J. Working memory in early Alzheimer’s disease: A neuropsychological review. Int. J. Geriatr. Psychiatry. 2010;25:121–132. doi: 10.1002/gps.2314. PubMed DOI
Micotti E., Paladini A., Balducci C., Tolomeo D., Frasca A., Marizzoni M., Filibian M., Caroli A., Valbusa G., Dix S., et al. Striatum and entorhinal cortex atrophy in ad mouse models: Mri comprehensive analysis. Neurobiol. Aging. 2015;36:776–788. doi: 10.1016/j.neurobiolaging.2014.10.027. PubMed DOI
Yeh C.Y., Vadhwana B., Verkhratsky A., Rodriguez J.J. Early astrocytic atrophy in the entorhinal cortex of a triple transgenic animal model of Alzheimer’s disease. ASN Neuro. 2011;3:271–279. doi: 10.1042/AN20110025. PubMed DOI PMC
Yeh C.Y., Verkhratsky A., Terzieva S., Rodriguez J.J. Glutamine synthetase in astrocytes from entorhinal cortex of the triple transgenic animal model of Alzheimer’s disease is not affected by pathological progression. Biogerontology. 2013;14:777–787. doi: 10.1007/s10522-013-9456-1. PubMed DOI
Kulijewicz-Nawrot M., Sykova E., Chvatal A., Verkhratsky A., Rodriguez J.J. Astrocytes and glutamate homoeostasis in Alzheimer’s disease: A decrease in glutamine synthetase, but not in glutamate transporter-1, in the prefrontal cortex. ASN Neuro. 2013;5:273–282. doi: 10.1042/AN20130017. PubMed DOI PMC
Olabarria M., Noristani H.N., Verkhratsky A., Rodriguez J.J. Age-dependent decrease in glutamine synthetase expression in the hippocampal astroglia of the triple transgenic Alzheimer’s disease mouse model: Mechanism for deficient glutamatergic transmission? Mol. Neurodegener. 2011;6 doi: 10.1186/1750-1326-6-55. PubMed DOI PMC
Rodriguez J.J., Jones V.C., Tabuchi M., Allan S.M., Knight E.M., LaFerla F.M., Oddo S., Verkhratsky A. Impaired adult neurogenesis in the dentate gyrus of a triple transgenic mouse model of Alzheimer’s disease. PLoS ONE. 2008;3:152. doi: 10.1371/journal.pone.0002935. PubMed DOI PMC
Rodriguez J.J., Jones V.C., Verkhratsky A. Impaired cell proliferation in the subventricular zone in an Alzheimer’s disease model. Neuroreport. 2009;20:907–912. doi: 10.1097/WNR.0b013e32832be77d. PubMed DOI
Paul G., Anisimov S.V. The secretome of mesenchymal stem cells: Potential implications for neuroregeneration. Biochimie. 2013;95:2246–2256. doi: 10.1016/j.biochi.2013.07.013. PubMed DOI
Chen L., Qiu R., Xu Q. Mesenchymal stem cell therapy for neurodegenerative diseases. J. Nanosci. Nanotechnol. 2014;14:969–975. doi: 10.1166/jnn.2014.9126. PubMed DOI