Resting Heart Rate Does Not Predict Cardiovascular and Renal Outcomes in Type 2 Diabetic Patients
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26824046
PubMed Central
PMC4707347
DOI
10.1155/2016/6726492
Knihovny.cz E-zdroje
- MeSH
- časové faktory MeSH
- diabetes mellitus 2. typu komplikace diagnóza mortalita patofyziologie MeSH
- diabetické nefropatie diagnóza etiologie mortalita patofyziologie MeSH
- hodnoty glomerulární filtrace MeSH
- Kaplanův-Meierův odhad MeSH
- kardiovaskulární nemoci diagnóza etiologie mortalita patofyziologie MeSH
- ledviny patofyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- prediktivní hodnota testů MeSH
- progrese nemoci MeSH
- prospektivní studie MeSH
- rizikové faktory MeSH
- senioři MeSH
- srdeční frekvence * MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Elevated resting heart rate (RHR) has been associated with increased risk of mortality and cardiovascular events. Limited data are available so far in type 2 diabetic (T2DM) subjects with no study focusing on progressive renal decline specifically. Aims of our study were to verify RHR as a simple and reliable predictor of adverse disease outcomes in T2DM patients. A total of 421 T2DM patients with variable baseline stage of diabetic kidney disease (DKD) were prospectively followed. A history of the cardiovascular disease was present in 81 (19.2%) patients at baseline, and DKD (glomerular filtration rate < 60 mL/min or proteinuria) was present in 328 (77.9%) at baseline. Progressive renal decline was defined as a continuous rate of glomerular filtration rate loss ≥ 3.3% per year. Resting heart rate was not significantly higher in subjects with cardiovascular disease or DKD at baseline compared to those without. Using time-to-event analyses, significant differences in the cumulative incidence of the studied outcomes, that is, progression of DKD (and specifically progressive renal decline), major advanced cardiovascular event, and all-cause mortality, between RHR ≥65 (arbitrary cut-off) and 75 (median) bpm were not found. We did not ascertain predictive value of the RHR for the renal or cardiovascular outcomes in T2DM subjects in Czech Republic.
Zobrazit více v PubMed
Palatini P., Julius S. Elevated heart rate: a major risk factor for cardiovascular disease. Clinical and Experimental Hypertension. 2004;26(7-8):637–644. doi: 10.1081/ceh-200031959. PubMed DOI
Fox K., Borer J. S., Camm A. J., et al. Resting heart rate in cardiovascular disease. Journal of the American College of Cardiology. 2007;50(9):823–830. doi: 10.1016/j.jacc.2007.04.079. PubMed DOI
Woodward M., Webster R., Murakami Y., et al. The association between resting heart rate, cardiovascular disease and mortality: evidence from 112,680 men and women in 12 cohorts. European Journal of Preventive Cardiology. 2014;21(6):719–726. doi: 10.1177/2047487312452501. PubMed DOI
Lang C. C., Gupta S., Kalra P., et al. Elevated heart rate and cardiovascular outcomes in patients with coronary artery disease: clinical evidence and pathophysiological mechanisms. Atherosclerosis. 2010;212(1):1–8. doi: 10.1016/j.atherosclerosis.2010.01.029. PubMed DOI
Stettler C., Bearth A., Allemann S., et al. QTc interval and resting heart rate as long-term predictors of mortality in type 1 and type 2 diabetes mellitus: a 23-year follow-up. Diabetologia. 2007;50(1):186–194. doi: 10.1007/s00125-006-0483-1. PubMed DOI
Linnemann B., Janka H. U. Prolonged QTc interval and elevated heart rate identify the type 2 diabetic patient at high risk for cardiovascular death. The Bremen diabetes study. Experimental and Clinical Endocrinology and Diabetes. 2003;111(4):215–222. doi: 10.1055/s-2003-40466. PubMed DOI
Hillis G. S., Woodward M., Rodgers A., et al. Resting heart rate and the risk of death and cardiovascular complications in patients with type 2 diabetes mellitus. Diabetologia. 2012;55(5):1283–1290. doi: 10.1007/s00125-012-2471-y. PubMed DOI PMC
Hillis G. S., Hata J., Woodward M., et al. Resting heart rate and the risk of microvascular complications in patients with type 2 diabetes mellitus. Journal of the American Heart Association. 2012;1(5) doi: 10.1161/jaha.112.002832.e002832 PubMed DOI PMC
Miot A., Ragot S., Hammi W., et al. Prognostic value of resting heart rate on cardiovascular and renal outcomes in type 2 diabetic patients: a competing risk analysis in a prospective cohort. Diabetes Care. 2012;35(10):2069–2075. doi: 10.2337/dc11-2468. PubMed DOI PMC
Krolewski A. S., Niewczas M. A., Skupien J., et al. Early progressive renal decline precedes the onset of microalbuminuria and its progression to macroalbuminuria. Diabetes Care. 2014;37(1):226–234. doi: 10.2337/dc13-0985. PubMed DOI PMC
Krolewski A. S., Gohda T., Niewczas M. A. Progressive renal decline as the major feature of diabetic nephropathy in type 1 diabetes. Clinical and Experimental Nephrology. 2014;18(4):571–583. doi: 10.1007/s10157-013-0900-y. PubMed DOI PMC
Pugliese G., Solini A., Bonora E., et al. Chronic kidney disease in type 2 diabetes: lessons from the Renal Insufficiency And Cardiovascular Events (RIACE) Italian Multicentre Study. Nutrition, Metabolism and Cardiovascular Diseases. 2014;24(8):815–822. doi: 10.1016/j.numecd.2014.02.013. PubMed DOI
Lindeman R. D., Tobin J., Shock N. W. Longitudinal studies on the rate of decline in renal function with age. Journal of the American Geriatrics Society. 1985;33(4):278–285. doi: 10.1111/j.1532-5415.1985.tb07117.x. PubMed DOI
Gray R. J. A class of K-sample tests for comparing the cumulative incidence of a competing risk. The Annals of Statistics. 1988;16(3):1141–1154. doi: 10.1214/aos/1176350951. DOI
Fine J. P., Gray R. J. A proportional hazards model for the subdistribution of a competing risk. Journal of the American Statistical Association. 1999;94(446):496–509. doi: 10.2307/2670170. DOI
Krolewski A. S. Progressive renal decline: the new paradigm of diabetic nephropathy in type 1 diabetes. Diabetes Care. 2015;38(6):954–962. doi: 10.2337/dc15-0184. PubMed DOI PMC
Morcet J.-F., Safar M., Thomas F., Guize L., Benetos A. Associations between heart rate and other risk factors in a large French population. Journal of Hypertension. 1999;17(12):1671–1676. doi: 10.1097/00004872-199917120-00003. PubMed DOI
ADVANCE Management Committee. Study rationale and design of ADVANCE: action in diabetes and vascular disease—preterax and diamicron MR controlled evaluation. Diabetologia. 2001;44(9):1118–1120. doi: 10.1007/s001250100612. PubMed DOI
Böhm M., Reil J. C., Danchin N., Thoenes M., Bramlage P., Volpe M. Association of heart rate with microalbuminuria in cardiovascular risk patients: data from I-SEARCH. Journal of Hypertension. 2008;26(1):18–25. doi: 10.1097/hjh.0b013e3282f05c8a. PubMed DOI
Nakagawa T., Tanabe K., Croker B. P., et al. Endothelial dysfunction as a potential contributor in diabetic nephropathy. Nature Reviews Nephrology. 2011;7(1):36–44. doi: 10.1038/nrneph.2010.152. PubMed DOI PMC
Palatini P. Elevated heart rate in cardiovascular diseases: a target for treatment? Progress in Cardiovascular Diseases. 2009;52(1):46–60. doi: 10.1016/j.pcad.2009.05.005. PubMed DOI
American Diabetes Association. Standards of medical care in diabetes—2008. Diabetes Care. 2008;31(supplement 1):S12–S54. doi: 10.2337/dc08-S012. PubMed DOI
Vinik A. I., Maser R. E., Mitchell B. D., Freeman R. Diabetic autonomic neuropathy. Diabetes Care. 2003;26(5):1553–1579. doi: 10.2337/diacare.26.5.1553. PubMed DOI