Resting Heart Rate Does Not Predict Cardiovascular and Renal Outcomes in Type 2 Diabetic Patients
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26824046
PubMed Central
PMC4707347
DOI
10.1155/2016/6726492
Knihovny.cz E-resources
- MeSH
- Time Factors MeSH
- Diabetes Mellitus, Type 2 complications diagnosis mortality physiopathology MeSH
- Diabetic Nephropathies diagnosis etiology mortality physiopathology MeSH
- Glomerular Filtration Rate MeSH
- Kaplan-Meier Estimate MeSH
- Cardiovascular Diseases diagnosis etiology mortality physiopathology MeSH
- Kidney physiopathology MeSH
- Middle Aged MeSH
- Humans MeSH
- Predictive Value of Tests MeSH
- Disease Progression MeSH
- Prospective Studies MeSH
- Risk Factors MeSH
- Aged MeSH
- Heart Rate * MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
Elevated resting heart rate (RHR) has been associated with increased risk of mortality and cardiovascular events. Limited data are available so far in type 2 diabetic (T2DM) subjects with no study focusing on progressive renal decline specifically. Aims of our study were to verify RHR as a simple and reliable predictor of adverse disease outcomes in T2DM patients. A total of 421 T2DM patients with variable baseline stage of diabetic kidney disease (DKD) were prospectively followed. A history of the cardiovascular disease was present in 81 (19.2%) patients at baseline, and DKD (glomerular filtration rate < 60 mL/min or proteinuria) was present in 328 (77.9%) at baseline. Progressive renal decline was defined as a continuous rate of glomerular filtration rate loss ≥ 3.3% per year. Resting heart rate was not significantly higher in subjects with cardiovascular disease or DKD at baseline compared to those without. Using time-to-event analyses, significant differences in the cumulative incidence of the studied outcomes, that is, progression of DKD (and specifically progressive renal decline), major advanced cardiovascular event, and all-cause mortality, between RHR ≥65 (arbitrary cut-off) and 75 (median) bpm were not found. We did not ascertain predictive value of the RHR for the renal or cardiovascular outcomes in T2DM subjects in Czech Republic.
See more in PubMed
Palatini P., Julius S. Elevated heart rate: a major risk factor for cardiovascular disease. Clinical and Experimental Hypertension. 2004;26(7-8):637–644. doi: 10.1081/ceh-200031959. PubMed DOI
Fox K., Borer J. S., Camm A. J., et al. Resting heart rate in cardiovascular disease. Journal of the American College of Cardiology. 2007;50(9):823–830. doi: 10.1016/j.jacc.2007.04.079. PubMed DOI
Woodward M., Webster R., Murakami Y., et al. The association between resting heart rate, cardiovascular disease and mortality: evidence from 112,680 men and women in 12 cohorts. European Journal of Preventive Cardiology. 2014;21(6):719–726. doi: 10.1177/2047487312452501. PubMed DOI
Lang C. C., Gupta S., Kalra P., et al. Elevated heart rate and cardiovascular outcomes in patients with coronary artery disease: clinical evidence and pathophysiological mechanisms. Atherosclerosis. 2010;212(1):1–8. doi: 10.1016/j.atherosclerosis.2010.01.029. PubMed DOI
Stettler C., Bearth A., Allemann S., et al. QTc interval and resting heart rate as long-term predictors of mortality in type 1 and type 2 diabetes mellitus: a 23-year follow-up. Diabetologia. 2007;50(1):186–194. doi: 10.1007/s00125-006-0483-1. PubMed DOI
Linnemann B., Janka H. U. Prolonged QTc interval and elevated heart rate identify the type 2 diabetic patient at high risk for cardiovascular death. The Bremen diabetes study. Experimental and Clinical Endocrinology and Diabetes. 2003;111(4):215–222. doi: 10.1055/s-2003-40466. PubMed DOI
Hillis G. S., Woodward M., Rodgers A., et al. Resting heart rate and the risk of death and cardiovascular complications in patients with type 2 diabetes mellitus. Diabetologia. 2012;55(5):1283–1290. doi: 10.1007/s00125-012-2471-y. PubMed DOI PMC
Hillis G. S., Hata J., Woodward M., et al. Resting heart rate and the risk of microvascular complications in patients with type 2 diabetes mellitus. Journal of the American Heart Association. 2012;1(5) doi: 10.1161/jaha.112.002832.e002832 PubMed DOI PMC
Miot A., Ragot S., Hammi W., et al. Prognostic value of resting heart rate on cardiovascular and renal outcomes in type 2 diabetic patients: a competing risk analysis in a prospective cohort. Diabetes Care. 2012;35(10):2069–2075. doi: 10.2337/dc11-2468. PubMed DOI PMC
Krolewski A. S., Niewczas M. A., Skupien J., et al. Early progressive renal decline precedes the onset of microalbuminuria and its progression to macroalbuminuria. Diabetes Care. 2014;37(1):226–234. doi: 10.2337/dc13-0985. PubMed DOI PMC
Krolewski A. S., Gohda T., Niewczas M. A. Progressive renal decline as the major feature of diabetic nephropathy in type 1 diabetes. Clinical and Experimental Nephrology. 2014;18(4):571–583. doi: 10.1007/s10157-013-0900-y. PubMed DOI PMC
Pugliese G., Solini A., Bonora E., et al. Chronic kidney disease in type 2 diabetes: lessons from the Renal Insufficiency And Cardiovascular Events (RIACE) Italian Multicentre Study. Nutrition, Metabolism and Cardiovascular Diseases. 2014;24(8):815–822. doi: 10.1016/j.numecd.2014.02.013. PubMed DOI
Lindeman R. D., Tobin J., Shock N. W. Longitudinal studies on the rate of decline in renal function with age. Journal of the American Geriatrics Society. 1985;33(4):278–285. doi: 10.1111/j.1532-5415.1985.tb07117.x. PubMed DOI
Gray R. J. A class of K-sample tests for comparing the cumulative incidence of a competing risk. The Annals of Statistics. 1988;16(3):1141–1154. doi: 10.1214/aos/1176350951. DOI
Fine J. P., Gray R. J. A proportional hazards model for the subdistribution of a competing risk. Journal of the American Statistical Association. 1999;94(446):496–509. doi: 10.2307/2670170. DOI
Krolewski A. S. Progressive renal decline: the new paradigm of diabetic nephropathy in type 1 diabetes. Diabetes Care. 2015;38(6):954–962. doi: 10.2337/dc15-0184. PubMed DOI PMC
Morcet J.-F., Safar M., Thomas F., Guize L., Benetos A. Associations between heart rate and other risk factors in a large French population. Journal of Hypertension. 1999;17(12):1671–1676. doi: 10.1097/00004872-199917120-00003. PubMed DOI
ADVANCE Management Committee. Study rationale and design of ADVANCE: action in diabetes and vascular disease—preterax and diamicron MR controlled evaluation. Diabetologia. 2001;44(9):1118–1120. doi: 10.1007/s001250100612. PubMed DOI
Böhm M., Reil J. C., Danchin N., Thoenes M., Bramlage P., Volpe M. Association of heart rate with microalbuminuria in cardiovascular risk patients: data from I-SEARCH. Journal of Hypertension. 2008;26(1):18–25. doi: 10.1097/hjh.0b013e3282f05c8a. PubMed DOI
Nakagawa T., Tanabe K., Croker B. P., et al. Endothelial dysfunction as a potential contributor in diabetic nephropathy. Nature Reviews Nephrology. 2011;7(1):36–44. doi: 10.1038/nrneph.2010.152. PubMed DOI PMC
Palatini P. Elevated heart rate in cardiovascular diseases: a target for treatment? Progress in Cardiovascular Diseases. 2009;52(1):46–60. doi: 10.1016/j.pcad.2009.05.005. PubMed DOI
American Diabetes Association. Standards of medical care in diabetes—2008. Diabetes Care. 2008;31(supplement 1):S12–S54. doi: 10.2337/dc08-S012. PubMed DOI
Vinik A. I., Maser R. E., Mitchell B. D., Freeman R. Diabetic autonomic neuropathy. Diabetes Care. 2003;26(5):1553–1579. doi: 10.2337/diacare.26.5.1553. PubMed DOI