The genome of an Encephalitozoon cuniculi type III strain reveals insights into the genetic diversity and mode of reproduction of a ubiquitous vertebrate pathogen
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26837273
PubMed Central
PMC4834387
DOI
10.1038/hdy.2016.4
PII: hdy20164
Knihovny.cz E-resources
- MeSH
- Arvicolinae microbiology MeSH
- DNA, Fungal genetics MeSH
- Encephalitozoon cuniculi genetics MeSH
- Genetic Variation * MeSH
- Genome, Fungal * MeSH
- Genotype MeSH
- Heterozygote MeSH
- Polymorphism, Single Nucleotide MeSH
- Chromosome Mapping MeSH
- Meiosis MeSH
- Sequence Analysis, DNA MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Fungal MeSH
Encephalitozoon cuniculi is a model microsporidian species with a mononucleate nucleus and a genome that has been extensively studied. To date, analyses of genome diversity have revealed the existence of four genotypes in E. cuniculi (EcI, II, III and IV). Genome sequences are available for EcI, II and III, and are all very divergent, possibly diploid and genetically homogeneous. The mechanisms that cause low genetic diversity in E. cuniculi (for example, selfing, inbreeding or a combination of both), as well as the degree of genetic variation in their natural populations, have been hard to assess because genome data have been so far gathered from laboratory-propagated strains. In this study, we aim to tackle this issue by analyzing the complete genome sequence of a natural strain of E. cuniculi isolated in 2013 from a steppe lemming. The strain belongs to the EcIII genotype and has been designated EcIII-L. The EcIII-L genome sequence harbors genomic features intermediate to known genomes of II and III lab strains, and we provide primers that differentiate the three E. cuniculi genotypes using a single PCR. Surprisingly, the EcIII-L genome is also highly homogeneous, harbors signatures of heterozygosity and also one strain-specific single-nucleotide polymorphism (SNP) that introduces a stop codon in a key meiosis gene, Spo11. Functional analyses using a heterologous system demonstrate that this SNP leads to a deficient meiosis in a model fungus. This indicates that EcIII-L meiotic machinery may be presently broken. Overall, our findings reveal previously unsuspected genome diversity in E. cuniculi, some of which appears to affect genes of primary importance for the biology of this pathogen.
Department of Biology Canadian Institute for Advanced Research University of Ottawa Ottawa ON Canada
Department of Biology Carleton University Ottawa Ontario Canada
FASTERIS S A Ch du Pont du Centenaire 109 Plan les Ouates Switzerland
Ottawa Institute of Systems Biology Carleton University Ottawa Ontario Canada
See more in PubMed
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. (1990). Basic local alignment search tool. J Mol Biol 215: 403–410. PubMed
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS et al. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19: 455–477. PubMed PMC
Bernander R, Palm JE, Svard SG. (2001). Genome ploidy in different stages of the Giardia lamblia life cycle. Cell Microbiol 3: 55–62. PubMed
Boisvert S, Laviolette F, Corbeil J. (2010). Ray: simultaneous assembly of reads from a mix of high-throughput sequencing technologies. J Comput Biol 17: 1519–1533. PubMed PMC
Butler G, Rasmussen MD, Lin MF, Santos MA, Sakthikumar S, Munro CA et al. (2009). Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459: 657–662. PubMed PMC
Corradi N. (2015). Microsporidia: eukaryotic intracellular parasites shaped by gene loss and horizontal gene transfers. Ann Rev Microbiol 69: 167–183. PubMed
Corradi N, Selman M. (2013). Latest progress in microsporidian genome research. J Eukaryot Microbiol 60: 309–312. PubMed
Cuomo CA, Desjardins CA, Bakowski MA, Goldberg J, Ma AT, Becnel JJ et al. (2012). Microsporidian genome analysis reveals evolutionary strategies for obligate intracellular growth. Genome Res 22: 2478–2488. PubMed PMC
Darling AC, Mau B, Blattner FR, Perna NT. (2004). Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14: 1394–1403. PubMed PMC
De Bosschere H, Wang Z, Orlandi P. (2007). First diagnosis of Encephalitozoon intestinalis and E. hellem in a European brown hare (Lepus europaeus) with kidney lesions. Zoonoses Public Health 54: 131–134. PubMed
Desjardins CA, Sanscrainte ND, Goldberg JM, Heiman D, Young S, Zeng Q et al. (2015). Contrasting host-pathogen interactions and genome evolution in two generalist and specialist microsporidian pathogens of mosquitoes. Nature Commun 6: 7121. PubMed PMC
Didier PJ, Didier ES, Orenstein JM, Shadduck JA. (1991). Fine structure of a new human microsporidian, Encephalitozoon hellem, in culture. J Protozool 38: 502–507. PubMed
Esquissato GN, Sant'anna JR, Franco CC, Rosada LJ, Santos PA, Castro-Prado MA. (2014). Gene homozygosis and mitotic recombination induced by camptothecin and irinotecan in Aspergillus nidulans diploid cells. An Acad Bras Ciênc 86: 1703–1710. PubMed
Gelperin DM, White MA, Wilkinson ML, Kon Y, Kung LA, Wise KJ et al. (2005). Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev 19: 2816–2826. PubMed PMC
Gerke JP, Chen CT, Cohen BA. (2006). Natural isolates of Saccharomyces cerevisiae display complex genetic variation in sporulation efficiency. Genetics 174: 985–997. PubMed PMC
Goodenough U, Heitman J. (2014). Origins of eukaryotic sexual reproduction. Cold Spring Harb Perspect Biol 6: a016154. PubMed PMC
Hofmannova L, Sak B, Jekl V, Mináriková A, Skorič M, Kváč M. (2014). Lethal Encephalitozoon cuniculi genotype III infection in Steppe lemmings (Lagurus lagurus). Vet Parasitol 205: 357–360. PubMed
Inagaki A, Schoenmakers S, Baarends WM. (2010). DNA double strand break repair, chromosome synapsis and transcriptional silencing in meiosis. Epigenetics 5: 255–266. PubMed
James TY, Lee M, van Diepen LT. (2011). A single mating-type locus composed of homeodomain genes promotes nuclear migration and heterokaryosis in the white-rot fungus Phanerochaete chrysosporium. Eukaryot Cell 10: 249–261. PubMed PMC
James TY, Pelin A, Bonen L, Ahrendt S, Sain D, Corradi N et al. (2013). Shared signatures of parasitism and phylogenomics unite Cryptomycota and microsporidia. Curr Biol 23: 1548–1553. PubMed
Katinka MD, Duprat S, Cornillot E, Méténier G, Thomarat F, Prensier G et al. (2001). Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414: 450–453. PubMed
Katzwinkel-Wladarsch S, Lieb M, Helse W, Löscher T, Rinder H. (1996). Direct amplification and species determination of microsporidian DNA from stool specimens. Trop Med Int Health 1: 373–378. PubMed
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S et al. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647–1649. PubMed PMC
Keeling PJ, Fast NM. (2002). Microsporidia: biology and evolution of highly reduced intracellular parasites. Ann Rev Microbiol 56: 93–116. PubMed
Keeney S. (2001). Mechanism and control of meiotic recombination initiation. Curr Top Dev Biol 52: 1–53. PubMed
Klapholz S, Waddell CS, Esposito RE. (1985). The role of the SPO11 gene in meiotic recombination in yeast. Genetics 110: 187–216. PubMed PMC
Kofler R, Orozco-terWengel P, De Maio N, Pandey RV, Nolte V, Futschik A et al. (2011). PoPoolation: a toolbox for population genetic analysis of next generation sequencing data from pooled individuals. PLoS One 6: e15925. PubMed PMC
Kohalmi SE, Reader LJV, Samach A, Nowak J, Haughn GW, Crosby WL. (1998) Identification and characterization of protein interactions using the yeast 2-hybrid system In Gelvin SB, Schilperoort RA (eds) Plant Molecular Biology Manual. Springer: Amsterdam, Netherlands. pp 95–124.
LaFave MC, Sekelsky J. (2009). Mitotic recombination: why? when? how? where? PLoS Genet. 5: e1000411. PubMed PMC
Lario LD, Botta P, Casati P, Spampinato CP. (2015). Role of AtMSH7 in UV-B-induced DNA damage recognition and recombination. J Exp Bot 66: 3019–3026. PubMed
Lee SC, Heitman J, Ironside JE. (2014). Sex and the Microsporidia. In: Weiss LM, Becnel J (eds) Microsporidia: Pathogens of Opportunity First Edition. Wiley Blackwell: West Sussex, UK, pp 231–243.
Lee SC, Corradi N, Byrnes EJ 3rd, Torres-Martinez S, Dietrich FS, Keeling PJ et al. (2008). Microsporidia evolved from ancestral sexual fungi. Curr Biol 18: 1675–1679. PubMed PMC
Li H, Ruan J, Durbin R. (2008). Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18: 1851–1858. PubMed PMC
McCusker JH, Haber JE. (1977). Efficient sporulation of yeast in media buffered near pH6. J Bacteriol 132: 180–185. PubMed PMC
Minoche AE, Dohm JC, Himmelbauer H. (2011). Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and genome analyzer systems. Genome Biol 12: R112. PubMed PMC
Omidi K, Hooshyar M, Jessulat M, Samanfar B, Sanders M, Burnside D et al. (2014). Phosphatase complex Pph3/Psy2 is involved in regulation of efficient non-homologous end-joining pathway in the yeast Saccharomyces cerevisiae. PloS One 9: e87248. PubMed PMC
Pelin A, Selman M, Aris-Brosou S, Farinelli L, Corradi N. (2015). Genome analyses suggest the presence of polyploidy and recent human-driven expansions in eight global populations of the honeybee pathogen Nosema ceranae. Environ Microbiol 17: 4443–4458. PubMed
Pombert J-F, Xu J, Smith DR, Heiman D, Young S, Cuomo CA et al. (2013). Complete genome sequences from three genetically distinct strains reveal high intraspecies genetic diversity in the microsporidian Encephalitozoon cuniculi. Eukaryot Cell 12: 503–511. PubMed PMC
Rosenblum EB, James TY, Zamudio KR, Poorten TJ, Ilut D, Rodriguez D et al. (2013). Complex history of the amphibian-killing chytrid fungus revealed with genome resequencing data. Proc Natl Acad Sci USA 110: 9385–9390. PubMed PMC
Samanfar B, Tan le H, Shostak K, Chalabian F, Wu Z, Alamgir M et al. (2014). A global investigation of gene deletion strains that affect premature stop codon bypass in yeast, Saccharomyces cerevisiae. Mol Biosyst 10: 916–924. PubMed
Saul DJ, Reeves RA, Morgan HW, Bergquist PL. (1999). Thermus diversity and strain loss during enrichment. FEMS Microbiol Ecol 30: 157–162. PubMed
Selman M, Sak B, Kváč M, Farinelli L, Weiss LM, Corradi N. (2013). Extremely reduced levels of heterozygosity in the vertebrate pathogen Encephalitozoon cuniculi. Eukaryot Cell 12: 496–502. PubMed PMC
Sun S, Heitman J. (2015). From two to one: unipolar sexual reproduction. Fungal Biol Rev 29: 118–125. PubMed PMC
Talabani H, Sarfati C, Pillebout E, van Gool T, Derouin F, Menotti J. (2010). Disseminated infection with a new genovar of Encephalitozoon cuniculi in a renal transplant recipient. J Cin Microbiol 48: 2651–2653. PubMed PMC
Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, Pagé N et al. (2001). Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294: 2364–2368. PubMed
Vavra J, Lukes J. (2013). Microsporidia and 'the art of living together'. Adv Parasitol 82: 253–319. PubMed
Venturini L, Ferrarini A, Zenoni S, Tornielli GB, Fasoli M, Dal Santo S et al. (2013). De novo transcriptome characterization of Vitis vinifera cv. Corvina unveils varietal diversity. BMC Genomics 14: 41. PubMed PMC
Wang L, Shi X, Su Y, Meng Z, Lin H. (2012). Loss of genetic diversity in the cultured stocks of the large yellow croaker, Larimichthys crocea, revealed by microsatellites. Int J Mol Sci 13: 5584–5597. PubMed PMC
Watson AK, Williams TA, Williams BA, Moore KA, Hirt RP, Embley TM. (2015). Transcriptomic profiling of host-parasite interactions in the microsporidian Trachipleistophora hominis. BMC Genomics 16: 983. PubMed PMC