Metabolism and Disposition of Aditoprim in Swine, Broilers, Carp and Rats
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26838160
PubMed Central
PMC4738305
DOI
10.1038/srep20370
PII: srep20370
Knihovny.cz E-zdroje
- MeSH
- adenosindifosfát metabolismus MeSH
- aplikace orální MeSH
- chromatografie kapalinová MeSH
- hmotnostní spektrometrie MeSH
- játra chemie MeSH
- kapři moč MeSH
- krysa rodu Rattus moč MeSH
- kur domácí moč MeSH
- prasata moč MeSH
- tkáňová distribuce MeSH
- trimethoprim aplikace a dávkování analogy a deriváty farmakokinetika moč MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus moč MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosindifosfát MeSH
- aditoprim MeSH Prohlížeč
- trimethoprim MeSH
Aditoprim (ADP) is a newly developed antibacterial agent in veterinary medicine. The metabolism and disposition of ADP in swine, broilers, carp and rats were investigated by using a radio tracer method combined with a radioactivity detector and a liquid chromatography/ion trap/time-of-flight mass spectrometry. After a single oral administration, more than 94% of the dose was recovered within 14 d in the four species. The urine excretion was dominant in swine and rats, making up 78% of the dose. N-monodesmethyl-ADP, N-didesmethyl-ADP, and 10 new metabolites were characterized. These metabolites were biotransformed from the process of demethylation, α-hydroxylation, N-oxidation, and NH2-glucuronidation. After an oral dose for 7 d, ADP-derived radioactivity was widely distributed in tissues, and high concentrations were especially observed in bile, liver, kidney, lung, and spleen. The radioactivity in the liver was eliminated much more slowly than in other tissues, with a half-life of 4.26, 3.38, 6.69, and 5.21 d in swine, broilers, carp, and rats, respectively. ADP, N-monodesmethyl-ADP, and N-didesmethyl-ADP were the major metabolites in edible tissues. Notably, ADP was detected with the highest concentration and the longest duration in these tissues. These findings indicated that ADP is the marker residue and the liver is the residue target tissue.
Biomedical Research Center University Hospital Hradec Kralove Hradec Kralove Czech Republic
College of Life Science Yangtze University Jingzhou 434025 China
Zobrazit více v PubMed
Hawser S., Lociuro S. & Islam K. Dihydrofolate reductase inhibitors as antibacterialagents. Biochem Pharmacol 71, 941–948 (2006). PubMed
Then R. L. & Keller M. Properties of aditoprim, a new antibacterial dihydrofolate reductase inhibitor. Zentralbl Veterinarmed B 35, 114–120 (1988). PubMed
Iqbal M. P., Niazi S. K., Ashfaq M. K. & Mahboobali N. Pharmacokinetics of aditoprim in normal and febrile sheep. Biopharm Drug Dispos. Biopharmaceutics & drug disposition1 16, 343–349 (1995). PubMed
Haenni K., Jordan J. C., Ludwig B. & Rehm W. F. Pharmacokinetics of aditoprim, a dihydrofolate reductase inhibitor, in sheep. J Vet Pharmacol Ther 10, 169–171 (1987). PubMed
Knoppert N. W. et al. Some pharmacokinetic data of aditoprim and trimethoprim in healthy and tick-borne fever infected dwarf goats. J Vet Pharmacol Ther 11, 135–144 (1988). PubMed
Jordan J. C., Klatt P. & Ludwig B. Pharmacokinetics of aditoprim, a new long-acting dihydrofolate reductase inhibitor, in heifers. Zentralbl Veterinarmed A 34, 33–41 (1987). PubMed
Lohuis J. A. et al. Effects of endotoxin-induced mastitis on the pharmacokinetic properties of aditoprim in dairy cows. Am J Vet Res 53, 2311–2314 (1992). PubMed
Iqbal M. P., Ashfaq M. K., Niazi S. K., Mahboobali M. & Khawaja K. N. Pharmacokinetics of aditoprim and trimethoprim in buffalo calves. Biopharm Drug Dispos 15, 173–177 (1994). PubMed
Sutter H. M., Riond J. L. & Wanner M. Comparative pharmacokinetics of aditoprim in milk-fed and conventionally fed calves of different ages. Res Vet Sci 54, 86–93 (1993). PubMed
Riond J. L., Müller P. & Wanner M. The influence of age on the pharmacokinetics of aditoprim in pigs after intravenous and oral administration. Vet Res Commun 16, 355–364 (1992). PubMed
Von Fellenberg R. L., Jordan J. C., Ludwig B. & Rehm W. F. Plasma disposition and tolerance of aditoprim in horses after single intravenous injection. Zentralbl Veterinarmed A 37, 253–258 (1990). PubMed
Engeli J., Riond J. L. & Wanner M. Research note: pharmacokinetics of aditoprim in turkeys after intravenous and oral administration. Poult Sci 72, 979–983 (1993). PubMed
Sutter H.-M. et al. Pharmacokinetics of aditoprim in dogs after intravenous and oral administration: a preliminary study. J Small Anim Pract 32, 517–520 (1991).
Iqbal M. P., Niazi S. K., Mehboobali N. & Zaidi A. A. Disposition kinetics of aditoprim in two monkeys in comparison to other mammalian species. Biopharm Drug Dispos 16, 713–718 (1995). PubMed
Nebbia C., Dacasto M., Giaccherino A. R., Albo A. G. & Carletti M. Comparative expression of liver cytochrome P450-dependent monooxygenases in the horse and in other agricultural and laboratory species. Vet J 165, 53–64 (2003). PubMed
Antonovic L. & Martinez M. Role of the cytochrome P450 enzyme system in veterinary pharmacokinetics: where are we now? Where are we going? Future Med Chem 3, 855–879 (2011). PubMed
Mengelers M. J., Kleter G. A., Hoogenboom L. A., Kuiper H. A. & Van Miert A. S. The botransformation of sulfadimethoxine, sulfadimidine, sulfamethoxazole, trimethoprim and aditoprim by primary cultures of pig hepatocytes. J Vet Pharmacol Ther 20, 24–32 (1997). PubMed
Alvinerie M. et al. Determination of aditoprim and its oxidative metabolites in plasma and microsomal incubation mixtures by high-performance liquid chromatography. J Chromatogr 612, 115–121 (1993). PubMed
White R. E. et al. Radiolabeled mass-balance excretion and metabolism studies in laboratory animals: a commentary on why they are still necessary. Xenobiotica 43, 219–225 (2013). PubMed
Liu Z. Y. An introduction to hybrid ion trap/time-of-flight mass spectrometry coupled with liquid chromatography applied to drug metabolism studies. J Mass Spectrom 47, 1627–1642 (2012). PubMed
Meshi T. & Sato Y. Studies on sulfamethoxazole/mtrimethoprim. Absorption, distribution, excretion and metabolism of trimethoprim in rat. Chem Pharm Bull (Tokyo) 20, 2079–2090 (1972). PubMed
Nielsen P., Gyrd-Hansen N., Olsen C. E. & Xia W. J. Pharmacokinetics and Metabolism of Metioprim in Pigs and Goats. Pharmacol Toxicol 61, 330–334 (1987). PubMed
Toutain P. L., Ferran A. & Bousquet-Mélou A. Species differences in pharmacokinetics and pharmacodynamics. Handbook of experimental pharmacology 199, 19–48 (2010). PubMed
Riond J. L. & Riviere J. E. Allometric analysis of doxycycline pharmacokinetic parameters. J Vet Pharmacol Ther 13, 404–407 (1990). PubMed
Sigel C. W., Grace M. E. & Nichol C. A. Metabolism of trimethoprim in man and measurement of a new metabolite: a new fluorescence assay. J Infect Dis 128, 580–583 (1973). PubMed
Schwartz D. E., Vetter W. & Englert G. Trimethoprim metabolites in rat, dog and man: qualitative and quantitative studies. Arzneimittelforschung 20, 1867–1871 (1970). PubMed
Gyrd-Hansen N., Friis C., Nielsen P. & Rasmussen F. Metabolism of Trimethoprim in Neonatal and Young Pigs: Comparative in Vivo and in Vitro Studies. Acta Pharmacol Toxicol (Copenh) 55, 402–409 (1984). PubMed
Wang H. et al. Identification and elucidation of the structure of in vivo metabolites of diaveridine inchicken. J Chromatogr B Analyt Technol Biomed Life Sci 965, 91–99 (2014). PubMed
Lin Y. P., Si D. Y. & Liu C. X. Detecting and Identifying in vivo Metabolites of Brodimoprim via LC/ESI-MS with Data-dependent Scanning. CHEM RES 24, 430–436 (2008).
Li Z. et al. The relations between metabolic variations and genetic evolution of different species. Anal Biochem 477, 105–114 (2015). PubMed
Hutchinson T. H., Madden J. C., Naidoo V. & Walker C. H. Comparative metabolism as a key driver of wildlife species sensitivity to human and veterinary pharmaceuticals. Philos Trans R Soc Lond B Biol Sci 369, 1–9 (2014). PubMed PMC
Ludwig B. Use of pharmacokinetics when dealing with the drug residue problem in food-producing animals. Dtsch Tierarztl Wochenschr 96, 243–248 (1989). PubMed
Mengelers M. J., Van Klingeren B. & Van Miert A. S. In vitro susceptibility of some porcine respiratory tract pathogens to aditoprim,trimethoprim, sulfadimethoxine, sulfamethoxazole, and combinations of these agents. Am J Vet Res 51, 1860–1864 (1990). PubMed
Nebbia C. Biotransformation enzymes as determinants of xenobiotic toxicity in domestic animals. Vet J 161, 238–252 (2001). PubMed
Wang X. et al. Safety assessment of aditoprim acute, subchronic toxicity and mutagenicity studies. J Appl Toxicol 35, 1415–1426 (2015). PubMed
EMEA. Committee for veterinary medicinal products trimethoprim summary report (2) (EMEA/MRL/255/97-FINAL). Technical report. (1997) Available at: http://www.ema.europa.eu/docs/en_GB/document_library/Maximum_Residue_Limits_-_Report/2009/11/WC500015681.pdf. (Accessed: 10th October 2015).
Vijayaraj R., Devi M. L., Subramanian V. & Chattaraj P. K. 3D-QSAR Studies on the Inhibitory Activity of Trimethoprim Analogues against Escherichia coli Dihydrofolate Reductase. Chem Biol Drug Des 79, 935–942 (2012). PubMed
White G., Daluge S. M., Sigel C. W., Ferone R. & Wilson H. R. Baquiloprim, a new antifolate antibacterial: in vitro activity and pharmacokinetic properties in cattle. Res Vet Sci 54, 372–378 (1993). PubMed
Van Miert A. S. The sulfonamide-diaminopyrimidine story. J Vet Pharmacol Ther 17, 309–316 (1994). PubMed
Brogden R. N., Carmine A. A., Heel R. C., Speight T. M. & Avery G. S. Trimethoprim: a review of its antibacterial activity, pharmacokinetics and therapeuticuse in urinary tract infections. Drugs. 23, 405–430 (1982). PubMed
Hamadi N. B. & Msaddek M. The Swern Oxidation: First example of direct oxidation of 2-pyrazolines with“activated” DMSO. CR Chim 14, 997–1001 (2011).
VICH. Studies to Evaluate the Metabolism and Residue Kinetics of Veterinary Drugs in Food-producing Animals: Metabolism Study to Determine the Quantity and Identify the Nature of Residues [VICH GL 46 (MRK) – Metabolism and residue kinetcs]. Guidelines. (2012) Available at: http://www.vichsec.org/guidelines/pharmaceuticals/pharma-safety/metabolism-and-residue-kinetics.html. (Accessed: 5th October 2015).
FDA. Good Laboratory Practice for Nonclinical Laboratory Studies (FDA-2010-N-0548). Guidelines. (2014) Available at: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?cfrpart=58. (Accessed: 10th October 2015).