Lung Neutrophilia in Myeloperoxidase Deficient Mice during the Course of Acute Pulmonary Inflammation
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
R21 HL092506
NHLBI NIH HHS - United States
HL092506
NHLBI NIH HHS - United States
PubMed
26998194
PubMed Central
PMC4779540
DOI
10.1155/2016/5219056
Knihovny.cz E-resources
- MeSH
- Acute Disease MeSH
- Acute Lung Injury complications genetics MeSH
- Lipopolysaccharides MeSH
- Mice, Inbred C57BL MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Neutrophils pathology MeSH
- Peroxidase deficiency genetics MeSH
- Pneumonia chemically induced complications genetics MeSH
- Leukocyte Disorders complications genetics MeSH
- Metabolism, Inborn Errors complications MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Lipopolysaccharides MeSH
- Peroxidase MeSH
Systemic inflammation accompanying diseases such as sepsis affects primarily lungs and induces their failure. This remains the most common cause of sepsis induced mortality. While neutrophils play a key role in pulmonary failure, the mechanisms remain incompletely characterized. We report that myeloperoxidase (MPO), abundant enzyme in neutrophil granules, modulates the course of acute pulmonary inflammatory responses induced by intranasal application of lipopolysaccharide. MPO deficient mice had significantly increased numbers of airway infiltrated neutrophils compared to wild-type mice during the whole course of lung inflammation. This was accompanied by higher levels of RANTES in bronchoalveolar lavage fluid from the MPO deficient mice. Other markers of lung injury and inflammation, which contribute to recruitment of neutrophils into the inflamed lungs, including total protein and other selected proinflammatory cytokines did not significantly differ in bronchoalveolar lavage fluid from the wild-type and the MPO deficient mice. Interestingly, MPO deficient neutrophils revealed a decreased rate of cell death characterized by phosphatidylserine surface expression. Collectively, the importance of MPO in regulation of pulmonary inflammation, independent of its putative microbicidal functions, can be potentially linked to MPO ability to modulate the life span of neutrophils and to affect accumulation of chemotactic factors at the inflammatory site.
Department of Internal Medicine School of Medicine University of California Davis CA 95616 USA
See more in PubMed
Levy B. D., Serhan C. N. Resolution of acute inflammation in the lung. Annual Review of Physiology. 2014;76:467–492. doi: 10.1146/annurev-physiol-021113-170408. PubMed DOI PMC
Khadaroo R. G., Marshall J. C. ARDS and the multiple organ dysfunction syndrome: common mechanisms of a common systemic process. Critical Care Clinics. 2002;18(1):127–141. doi: 10.1016/s0749-0704(03)00069-1. PubMed DOI
Cohen J. The immunopathogenesis of sepsis. Nature. 2002;420(6917):885–891. doi: 10.1038/nature01326. PubMed DOI
Burns J. P. Septic shock in the pediatric patient: pathogenesis and novel treatments. Pediatric Emergency Care. 2003;19(2):112–115. doi: 10.1097/00006565-200304000-00013. PubMed DOI
Klebanoff S. J., Kettle A. J., Rosen H., Winterbourn C. C., Nauseef W. M. Myeloperoxidase: a front-line defender against phagocytosed microorganisms. Journal of Leukocyte Biology. 2013;93(2):185–198. doi: 10.1189/jlb.0712349. PubMed DOI PMC
Nauseef W. M. Myeloperoxidase in human neutrophil host defence. Cellular Microbiology. 2014;16(8):1146–1155. doi: 10.1111/cmi.12312. PubMed DOI PMC
Nussbaum C., Klinke A., Adam M., Baldus S., Sperandio M. Myeloperoxidase: a leukocyte-derived protagonist of inflammation and cardiovascular disease. Antioxidants and Redox Signaling. 2013;18(6):692–713. doi: 10.1089/ars.2012.4783. PubMed DOI
Kubala L., Schmelzer K. R., Klinke A., et al. Modulation of arachidonic and linoleic acid metabolites in myeloperoxidase-deficient mice during acute inflammation. Free Radical Biology and Medicine. 2010;48(10):1311–1320. doi: 10.1016/j.freeradbiomed.2010.02.010. PubMed DOI PMC
Arnhold J., Flemmig J. Human myeloperoxidase in innate and acquired immunity. Archives of Biochemistry and Biophysics. 2010;500(1):92–106. doi: 10.1016/j.abb.2010.04.008. PubMed DOI
Kubala L., Kolářová H., Víteček J., et al. The potentiation of myeloperoxidase activity by the glycosaminoglycan- dependent binding of myeloperoxidase to proteins of the extracellular matrix. Biochimica et Biophysica Acta (BBA)—General Subjects. 2013;1830(10):4524–4536. doi: 10.1016/j.bbagen.2013.05.024. PubMed DOI
Aratani Y., Kura F., Watanabe H., et al. Differential host susceptibility to pulmonary infections with bacteria and fungi in mice deficient in myeloperoxidase. Journal of Infectious Diseases. 2000;182(4):1276–1279. doi: 10.1086/315843. PubMed DOI
Homme M., Tateno N., Miura N., Ohno N., Aratani Y. Myeloperoxidase deficiency in mice exacerbates lung inflammation induced by nonviable Candida albicans . Inflammation Research. 2013;62(11):981–990. doi: 10.1007/s00011-013-0656-6. PubMed DOI
Brennan M.-L., Gaur A., Pahuja A., Lusis A. J., Reynolds W. F. Mice lacking myeloperoxidase are more susceptible to experimental autoimmune encephalomyelitis. Journal of Neuroimmunology. 2001;112(1-2):97–105. doi: 10.1016/S0165-5728(00)00392-1. PubMed DOI
Takizawa S., Aratani Y., Fukuyama N., et al. Deficiency of myeloperoxidase increases infarct volume and nitrotyrosine formation in mouse brain. Journal of Cerebral Blood Flow and Metabolism. 2002;22(1):50–54. PubMed
Milla C., Yang S., Cornfield D. N., et al. Myeloperoxidase deficiency enhances inflammation after allogeneic marrow transplantation. The American Journal of Physiology—Lung Cellular and Molecular Physiology. 2004;287(4):L706–L714. doi: 10.1152/ajplung.00015.2004. PubMed DOI
Komatsu J., Koyama H., Maeda N., Aratani Y. Earlier onset of neutrophil-mediated inflammation in the ultraviolet-exposed skin of mice deficient in myeloperoxidase and NADPH oxidase. Inflammation Research. 2006;55(5):200–206. doi: 10.1007/s00011-006-0071-3. PubMed DOI
Brennan M.-L., Anderson M. M., Shih D. M., et al. Increased atherosclerosis in myeloperoxidase-deficient mice. The Journal of Clinical Investigation. 2001;107(4):419–430. doi: 10.1172/jci8797. PubMed DOI PMC
Odobasic D., Kitching A. R., Yang Y., et al. Neutrophil myeloperoxidase regulates T-cell-driven tissue inflammation in mice by inhibiting dendritic cell function. Blood. 2013;121(20):4195–4204. doi: 10.1182/blood-2012-09-456483. PubMed DOI
Odobasic D., Kitching A. R., Semple T. J., Holdsworth S. R. Endogenous myeloperoxidase promotes neutrophil-mediated renal injury, but attenuates T cell immunity inducing crescentic glomerulonephritis. Journal of the American Society of Nephrology. 2007;18(3):760–770. doi: 10.1681/ASN.2006040375. PubMed DOI
Odobasic D., Muljadi R. C., O'Sullivan K. M., et al. Suppression of autoimmunity and renal disease in pristane-induced lupus by myeloperoxidase. Arthritis & Rheumatology. 2015;67(7):1868–1880. doi: 10.1002/art.39109. PubMed DOI
Okamoto T., Gohil K., Finkelstein E. I., Bove P., Akaike T., Van Der Vliet A. Multiple contributing roles for NOS2 in LPS-induced acute airway inflammation in mice. The American Journal of Physiology—Lung Cellular and Molecular Physiology. 2004;286(1):L198–L209. PubMed
Poynter M. E., Irvin C. G., Janssen-Heininger Y. M. W. A prominent role for airway epithelial NF-κB activation in lipopolysaccharide-induced airway inflammation. The Journal of Immunology. 2003;170(12):6257–6265. doi: 10.4049/jimmunol.170.12.6257. PubMed DOI
Viackova D., Pekarova M., Crhak T., et al. Redox-sensitive regulation of macrophage-inducible nitric oxide synthase expression in vitro does not correlate with the failure of apocynin to prevent lung inflammation induced by endotoxin. Immunobiology. 2011;216(4):457–465. doi: 10.1016/j.imbio.2010.09.005. PubMed DOI
Kolarova H., Klinke A., Kremserova S., et al. Myeloperoxidase induces the priming of platelets. Free Radical Biology and Medicine. 2013;61:357–369. doi: 10.1016/j.freeradbiomed.2013.04.014. PubMed DOI
Klinke A., Möller A., Pekarova M., et al. Protective effects of 10-nitro-oleic acid in a hypoxia-induced murine model of pulmonary hypertension. American Journal of Respiratory Cell and Molecular Biology. 2014;51(1):155–162. doi: 10.1165/rcmb.2013-0063oc. PubMed DOI PMC
Svihálková-Sindlerová L., Foltinová V., Vaculová A., et al. LA-12 overcomes confluence-dependent resistance of HT-29 colon cancer cells to Pt (II) compounds. Anticancer Research. 2010;30(4):1183–1188. PubMed
Klinke A., Nussbaum C., Kubala L., et al. Myeloperoxidase attracts neutrophils by physical forces. Blood. 2011;117(4):1350–1358. doi: 10.1182/blood-2010-05-284513. PubMed DOI
Takeuchi K., Umeki Y., Matsumoto N., et al. Severe neutrophil-mediated lung inflammation in myeloperoxidase-deficient mice exposed to zymosan. Inflammation Research. 2012;61(3):197–205. doi: 10.1007/s00011-011-0401-y. PubMed DOI
Haegens A., Heeringa P., van Suylen R. J., et al. Myeloperoxidase deficiency attenuates lipopolysaccharide-induced acute lung inflammation and subsequent cytokine and chemokine production. The Journal of Immunology. 2009;182(12):7990–7996. doi: 10.4049/jimmunol.0800377. PubMed DOI
Brennan M.-L., Wu W., Fu X., et al. A tale of two controversies: defining both the role of peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and myeloperoxidase-deficient mice, and the nature of peroxidase-generated reactive nitrogen species. Journal of Biological Chemistry. 2002;277(20):17415–17427. doi: 10.1074/jbc.m112400200. PubMed DOI
Kolaczkowska E., Kubes P. Neutrophil recruitment and function in health and inflammation. Nature Reviews Immunology. 2013;13(3):159–175. doi: 10.1038/nri3399. PubMed DOI
Lee C. S., Yi E. H., Lee J.-K., et al. Simvastatin suppresses RANTES-mediated neutrophilia in polyinosinic-polycytidylic acid-induced pneumonia. European Respiratory Journal. 2013;41(5):1147–1156. doi: 10.1183/09031936.00050612. PubMed DOI
Tateno N., Matsumoto N., Motowaki T., Suzuki K., Aratani Y. Myeloperoxidase deficiency induces MIP-2 production via ERK activation in zymosan-stimulated mouse neutrophils. Free Radical Research. 2013;47(5):376–385. doi: 10.3109/10715762.2013.778990. PubMed DOI
Haslett C. Granulocyte apoptosis and its role in the resolution and control of lung inflammation. American Journal of Respiratory and Critical Care Medicine. 1999;160(5, part 2):S5–S11. PubMed
Martin T. R., Nakamura M., Matute-Bello G. The role of apoptosis in acute lung injury. Critical Care Medicine. 2003;31(4):S184–S188. doi: 10.1097/01.ccm.0000057841.33876.b1. PubMed DOI
Tsurubuchi T., Aratani Y., Maeda N., Koyama H. Retardation of early-onset PMA-induced apoptosis in mouse neutrophils deficient in myeloperoxidase. Journal of Leukocyte Biology. 2001;70(1):52–58. PubMed
Saito T., Takahashi H., Doken H., Koyama H., Aratani Y. Phorbol myristate acetate induces neutrophil death through activation of p38 mitogen-activated protein kinase that requires endogenous reactive oxygen species other than HOCl. Bioscience, Biotechnology and Biochemistry. 2005;69(11):2207–2212. doi: 10.1271/bbb.69.2207. PubMed DOI
Fadeel B., Åhlin A., Henter J.-I., Orrenius S., Hampton M. B. Involvement of caspases in neutrophil apoptosis: regulation by reactive oxygen species. Blood. 1998;92(12):4808–4818. PubMed
Takei H., Araki A., Watanabe H., Ichinose A., Sendo F. Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis. Journal of Leukocyte Biology. 1996;59(2):229–240. PubMed
Kanayama A., Miyamoto Y. Apoptosis triggered by phagocytosis-related oxidative stress through FLIPS down-regulation and JNK activation. Journal of Leukocyte Biology. 2007;82(5):1344–1352. doi: 10.1189/jlb.0407259. PubMed DOI
Metzler K. D., Goosmann C., Lubojemska A., Zychlinsky A., Papayannopoulos V. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Reports. 2014;8(3):883–896. doi: 10.1016/j.celrep.2014.06.044. PubMed DOI PMC