• This record comes from PubMed

The Favorable Effect of Mesenchymal Stem Cell Treatment on the Antioxidant Protective Mechanism in the Corneal Epithelium and Renewal of Corneal Optical Properties Changed after Alkali Burns

. 2016 ; 2016 () : 5843809. [epub] 20160105

Status retracted Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't, Retracted Publication

The aim of this study was to examine whether mesenchymal stem cells (MSCs) and/or corneal limbal epithelial stem cells (LSCs) influence restoration of an antioxidant protective mechanism in the corneal epithelium and renewal of corneal optical properties changed after alkali burns. The injured rabbit corneas (with 0.25 N NaOH) were untreated or treated with nanofiber scaffolds free of stem cells, with nanofiber scaffolds seeded with bone marrow MSCs (BM-MSCs), with adipose tissue MSCs (Ad-MSCs), or with LSCs. On day 15 following the injury, after BM-MSCs or LSCs nanofiber treatment (less after Ad-MSCs treatment) the expression of antioxidant enzymes was restored in the regenerated corneal epithelium and the expressions of matrix metalloproteinase 9 (MMP9), inducible nitric oxide synthase (iNOS), α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1), and vascular endothelial factor (VEGF) were low. The central corneal thickness (taken as an index of corneal hydration) increased after the injury and returned to levels before the injury. In injured untreated corneas the epithelium was absent and numerous cells revealed the expressions of iNOS, MMP9, α-SMA, TGF-β1, and VEGF. In conclusion, stem cell treatment accelerated regeneration of the corneal epithelium, restored the antioxidant protective mechanism, and renewed corneal optical properties.

Retraction In

PubMed

See more in PubMed

Kubota M., Shimmura S., Kubota S., et al. Hydrogen and N-acetyl-L-cysteine rescue oxidative stress-induced angiogenesis in a mouse corneal alkali-burn model. Investigative Ophthalmology and Visual Science. 2011;52(1):427–433. doi: 10.1167/iovs.10-6167. PubMed DOI

Cejkova J., Trosan P., Cejka C., et al. Suppression of alkali-induced oxidative injury in the cornea by mesenchymal stem cells growing on nanofiber scaffolds and transferred onto the damaged corneal surface. Experimental Eye Research. 2013;116(5):312–323. doi: 10.1016/j.exer.2013.10.002. PubMed DOI

Cejkova J., Stipek S., Crkovska J., Ardan T. Changes of superoxide dismutase, catalase and glutathione peroxidase in the corneal epithelium after UVB rays. Histochemical and biochemical study. Histology and Histopathology. 2000;15(4):1043–1050. PubMed

Čejková J., Štípek S., Crkovská J., Ardan T., Midelfart A. Reactive oxygen species (ROS)-generating oxidases in the normal rabbit cornea and their involvement in the corneal damage evoked by UVB rays. Histology and Histopathology. 2001;16(2):523–533. PubMed

Finkel T., Holbrook N. J. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408(6809):239–247. doi: 10.1038/35041687. PubMed DOI

Čejková J., Ardan T., Čejka Č., Kovačeva J., Zídek Z. Irradiation of the rabbit cornea with UVB rays stimulates the expression of nitric oxide synthases-generated nitric oxide and the formation of cytotoxic nitrogen-related oxidants. Histology and Histopathology. 2005;20(2):467–473. PubMed

Arnal E., Peris-Martínez C., Menezo J. L., Johnsen-Soriano S., Romero F. J. Oxidative stress in keratoconus? Investigative Ophthalmology & Visual Science. 2011;52(12):8592–8597. doi: 10.1167/iovs.11-7732. PubMed DOI

Buddi R., Lin B., Atilano S. R., Zorapapel N. C., Kenney M. C., Brown D. J. Evidence of oxidative stress in human corneal diseases. Journal of Histochemistry and Cytochemistry. 2002;50(3):341–351. doi: 10.1177/002215540205000306. PubMed DOI

Zhou L., Sawaguchi S., Twining S. S., Sugar J., Feder R. S., Yue B. Y. J. T. Expression of degradative enzymes and protease inhibitors in corneas with keratoconus. Investigative Ophthalmology and Visual Science. 1998;39(7):1117–1124. PubMed

Valle-Prieto A., Conget P. A. Human mesenchymal stem cells efficiently manage oxidative stress. Stem Cells and Development. 2010;19(12):1885–1893. doi: 10.1089/scd.2010.0093. PubMed DOI

Chen Y. T., Sun C. K., Lin Y. C., et al. Adipose-derived mesenchymal stem cell protects kidneys against ischemia-reperfusion injury through suppressing oxidative stress and inflammatory reaction. Journal of Translation Medicine. 2011;9(1, article 51) doi: 10.1186/1479-5876-9-51. PubMed DOI PMC

Dey R., Kemp K., Gray E., Rice C., Scolding N., Wilkins A. Human mesenchymal stem cells increase anti-oxidant defences in cells derived from patients with friedreich's ataxia. Cerebellum. 2012;11(4):861–871. doi: 10.1007/s12311-012-0406-2. PubMed DOI

Liu H., McTaggart S. J., Johnson D. W., Gobe G. C. Original article anti-oxidant pathways are stimulated by mesenchymal stromal cells in renal repair after ischemic injury. Cytotherapy. 2012;14(2):162–172. doi: 10.3109/14653249.2011.613927. PubMed DOI

Kemp K., Gray E., Mallam E., Scolding N., Wilkins A. Inflammatory cytokine induced regulation of superoxide dismutase 3 expression by human mesenchymal stem cells. Stem Cell Reviews and Reports. 2010;6(4):548–559. doi: 10.1007/s12015-010-9178-6. PubMed DOI

Nightingale H., Kemp K., Gray E., et al. Changes in expression of the antioxidant enzyme SOD3 occur upon differentiation of human bone marrow-derived mesenchymal stem cells in vitro. Stem Cells and Development. 2012;21(11):2026–2035. doi: 10.1089/scd.2011.0516. PubMed DOI

Krulova M., Pokorna K., Lencova A., et al. A rapid separation of two distinct populations of corneal epithelial cells with limbal stem cell characteristics. Investigative Ophthalmology and Visual Sciences. 2008;49(9):3903–3908. doi: 10.1167/iovs.08-1987. PubMed DOI

Svobodova E., Krulova M., Zajicova A., et al. The role of mouse mesenchymal stem cells in differentiation of naive T-cells into anti-inflammatory regulatory T-cell or proinflammatory helper T-cell 17 population. Stem Cells and Development. 2012;21(6):901–910. doi: 10.1089/scd.2011.0157. PubMed DOI PMC

Holan V., Trosan P., Cejka C., et al. A comparative study of the therapeutic potential of mesenchymal stem cells and limbal epithelial stem cells for ocular surface reconstruction. Stem Cells Translational Medicine. 2015;4(9):1052–1063. doi: 10.5966/sctm.2015-0039. PubMed DOI PMC

Holan V., Chudickova M., Trosan P., et al. Cyclosporine A-loaded and stem cell-seeded electrospun nanofibers for cell-based therapy and local immunosuppression. Journal of Controlled Release. 2011;156(3):406–412. doi: 10.1016/j.jconrel.2011.07.022. PubMed DOI

Cejka C., Luyckx J., Cejková J. Central corneal thickness considered an index of corneal hydration of the UVB irradiated rabbit cornea as influenced by UVB absorber. Physiological Research. 2012;61(3):299–306. PubMed

Trosan P., Svobodova E., Chudickova M., Krulova M., Zajicova A., Holan V. The key role of insulin-like growth factor i in limbal stem cell differentiation and the corneal wound-healing process. Stem Cells and Development. 2012;21(18):3341–3350. doi: 10.1089/scd.2012.0180. PubMed DOI PMC

Zajicova A., Pokorna K., Lencova A., et al. Treatment of ocular surface injuries by limbal and mesenchymal stem cells growing on nanofiber scaffolds. Cell Transplantation. 2010;19(10):1281–1290. doi: 10.3727/096368910X509040. PubMed DOI

Lee C. H., Singla A., Lee Y. Biomedical applications of collagen. International Journal of Pharmaceutics. 2001;221(1-2):1–22. doi: 10.1016/s0378-5173(01)00691-3. PubMed DOI

Dua H. S. Amniotic membrane transplantation. British Journal of Ophthalmology. 1999;83(6):748–752. doi: 10.1136/bjo.83.6.748. PubMed DOI PMC

Cejkova J., Stipek S., Crkovska J., et al. UV rays, the prooxidanht/antioxidant imbalance in the cornea and oxidative eye damage. Physiological Research. 2004;53(1):1–10. PubMed

Kim E. C., Lee W. S., Kim M. S. The inhibitory effects of bevacizumab eye drops on NGF expression and corneal wound healing in rats. Investigative Ophthalmology and Visual Science. 2010;51(9):4569–4573. doi: 10.1167/iovs.09-4937. PubMed DOI

Kemp K., Hares K., Mallam E., Heesom K. J., Scolding N., Wilkins A. Mesenchymal stem cell-secreted superoxide dismutase promotes cerebellar neuronal survival. Journal of Neurochemistry. 2010;114(6):1569–1580. doi: 10.1111/j.1471-4159.2009.06553.x. PubMed DOI

Ueda J., Starr M. E., Takahashi H., et al. Decreased pulmonary extracellular superoxide dismutase during systemic inflammation. Free Radical Biology and Medicine. 2008;45(6):897–904. doi: 10.1016/j.freeradbiomed.2008.06.016. PubMed DOI PMC

Lob H. E., Marvar P. J., Guzik T. J., et al. Induction of hypertension and peripheral inflammation by reduction of extracellular superoxide dismutase in the central nervous system. Hypertension. 2010;55(2):277–283. doi: 10.1161/hypertensionaha.109.142646. PubMed DOI PMC

Yoon J. J., Ismail S., Sherwin T. Limbal stem cells: central concepts of corneal epithelial homeostasis. World Journal of Stem Cells. 2014;6(4):391–403. doi: 10.4252/wjsc.v6.i4.391. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...