Specific Magnetic Isolation of E6 HPV16 Modified Magnetizable Particles Coupled with PCR and Electrochemical Detection
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
27164078
PubMed Central
PMC4881435
DOI
10.3390/ijms17050585
PII: ijms17050585
Knihovny.cz E-zdroje
- Klíčová slova
- PCR, electrochemistry, human papillomavirus, magnetic isolation, magnetizable particles, nucleic acid detection,
- MeSH
- diagnostické techniky molekulární metody MeSH
- lidský papilomavirus 16 chemie genetika izolace a purifikace MeSH
- magnetické nanočástice chemie MeSH
- onkogenní proteiny virové chemie genetika MeSH
- polymerázová řetězová reakce metody MeSH
- represorové proteiny chemie genetika MeSH
- streptavidin chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- E6 protein, Human papillomavirus type 16 MeSH Prohlížeč
- magnetické nanočástice MeSH
- onkogenní proteiny virové MeSH
- represorové proteiny MeSH
- streptavidin MeSH
The majority of carcinomas that were developed due to the infection with human papillomavirus (HPV) are caused by high-risk HPV types, HPV16 and HPV18. These HPV types contain the E6 and E7 oncogenes, so the fast detection of these oncogenes is an important point to avoid the development of cancer. Many different HPV tests are available to detect the presence of HPV in biological samples. The aim of this study was to design a fast and low cost method for HPV identification employing magnetic isolation, polymerase chain reaction (PCR) and electrochemical detection. These assays were developed to detect the interactions between E6-HPV16 oncogene and magnetizable particles (MPs) using commercial Dynabeads M-280 Streptavidin particles and laboratory-synthesized "homemade" particles called MANs (MAN-37, MAN-127 and MAN-164). The yields of PCR amplification of E6-HPV16 oncogene bound on the particles and after the elution from the particles were compared. A highest yield of E6-HPV16 DNA isolation was obtained with both MPs particles commercial M-280 Streptavidin and MAN-37 due to reducing of the interferents compared with the standard PCR method. A biosensor employing the isolation of E6-HPV16 oncogene with MPs particles followed by its electrochemical detection can be a very effective technique for HPV identification, providing simple, sensitive and cost-effective analysis.
Zobrazit více v PubMed
Asiaf A., Ahmad S.T., Mohammad S.O., Zargar M.A. Review of the current knowledge on the epidemiology, pathogenesis, and prevention of human papillomavirus infection. Eur. J. Cancer Prev. 2014;23:206–224. doi: 10.1097/CEJ.0b013e328364f273. PubMed DOI
Parfenov M., Pedamallu C.S., Gehlenborg N., Freeman S.S., Danilova L., Bristow C.A., Lee S., Hadjipanayis A.G., Ivanova E.V., Wilkerson M.D., et al. Characterization of HPV and host genome interactions in primary head and neck cancers. Proc. Natl. Acad. Sci. USA. 2014;111:15544–15549. doi: 10.1073/pnas.1416074111. PubMed DOI PMC
Ruttkay-Nedecky B., Jimenez A.M.J., Nejdl L., Chudobova D., Gumulec J., Masarik M., Adam V., Kizek R. Relevance of infection with human papillomavirus: The role of the p53 tumor suppressor protein and E6/E7 zinc finger proteins. Int. J. Oncol. 2013;43:1754–1762. PubMed
Venuti A., Paolini F. HPV detection methods in head and neck cancer. Head Neck Pathol. 2012;6:S63–S74. doi: 10.1007/s12105-012-0372-5. PubMed DOI PMC
Syrjanen S. Human papillomavirus (HPV) in head and neck cancer. J. Clin. Virol. 2005;32:S59–S66. doi: 10.1016/j.jcv.2004.11.017. PubMed DOI
Avci G.A. Genomic organization and proteins of human papillomavirus. Mikrobiyol. Bul. 2012;46:507–515. PubMed
Yuan C.H., Filippova M., Duerksen-Hughes P. Modulation of Apoptotic Pathways by human papillomaviruses (HPV): Mechanisms and implications for therapy. Viruses. 2012;4:3831–3850. doi: 10.3390/v4123831. PubMed DOI PMC
Nejdl L., Skalickova S., Kudr J., Ruttkay-Nedecky B., Nguyen H.V., Rodrigo M.A.M., Kopel P., Konecna M., Adam V., Kizek R. Interaction of E6 gene from human papilloma virus 16 (HPV-16) with CdS quantum dots. Chromatographia. 2014;77:1433–1439. doi: 10.1007/s10337-014-2734-5. DOI
Polanska H., Raudenska M., Gumulec J., Sztalmachova M., Adam V., Kizek R., Masarik M. Clinical significance of head and neck squamous cell cancer biomarkers. Oral Oncol. 2014;50:168–177. doi: 10.1016/j.oraloncology.2013.12.008. PubMed DOI
Moreas H., Tsiambas E., Lazaris A.C., Nonni A., Karameris A., Metaxas G.E., Armatas H.E., Patsouris E. Impact of HPV detection in colorectal adenocarcinoma: HPV protein and chromogenic in situ hybridization analysis based on tissue microarrays. J. Buon. 2014;19:91–96. PubMed
Ramlee M.K., Yan T.D., Cheung A.M.S., Chuah C.T.H., Li S. High-throughput genotyping of CRISPR/Cas9-mediated mutants using fluorescent PCR-capillary gel electrophoresis. Sci. Rep. 2015;5:1–13. doi: 10.1038/srep15587. PubMed DOI PMC
Liu Q.L., Lin X.X., Lin L.Y., Yi L.L., Li H.F., Lin J.M. A comparative study of three different nucleic acid amplification techniques combined with microchip electrophoresis for HPV16 E6/E7 mRNA detection. Analyst. 2015;140:6736–6741. doi: 10.1039/C5AN00944H. PubMed DOI
Zhang X.F., Cheng R., Shi Z.L., Jin Y. A PCR-free fluorescence strategy for detecting telomerase activity via double amplification strategy. Biosens. Bioelectron. 2016;75:101–107. doi: 10.1016/j.bios.2015.08.013. PubMed DOI
Sun Y.Y., Lu X.H., Su F.X., Wang L.M., Liu C.H., Duan X.R., Li Z.P. Real-time fluorescence ligase chain reaction for sensitive detection of single nucleotide polymorphism based on fluorescence resonance energy transfer. Biosens. Bioelectron. 2015;74:705–710. doi: 10.1016/j.bios.2015.07.028. PubMed DOI
Miyaguchi H., Yamamuro T., Ohta H., Nakahara H., Suzuki S. Genotyping of toxic pufferfish based on specific PCR-RFLP products as determined by liquid chromatography/quadrupole-orbitrap hybrid mass spectrometry. J. Agric. Food Chem. 2015;63:9363–9371. doi: 10.1021/acs.jafc.5b03703. PubMed DOI
Yin R., Sun Y.J., Yu S., Wang Y., Zhang M.P., Xu Y.W., Xue J., Xu N. A validated strip-based lateral flow assay for the confirmation of sheep-specific PCR products for the authentication of meat. Food Control. 2016;60:146–150. doi: 10.1016/j.foodcont.2015.07.030. DOI
Loh Q.T., Omar N., Glokler J., Lim T.S. IQPA: Isothermal nucleic acid amplification-based immunoassay using DNAzyme as the reporter system. Anal. Biochem. 2014;463:67–69. doi: 10.1016/j.ab.2014.06.012. PubMed DOI
Napper A.D. Perspectives in ASSAY and drug development technologies. Assay Drug Dev. Technol. 2015;13:241–241. doi: 10.1089/adt.2015.29003.ana. PubMed DOI
Terenzi A., Ducani C., Blanco V., Zerzankova L., Westendorf A.F., Peinador C., Quintela J.M., Bednarski P.J., Barone G., Hannon M.J. DNA Binding studies and cytotoxicity of a dinuclear PtII diazapyrenium-based metallo-supramolecular rectangular box. Chem. Eur. J. 2012;18:10983–10990. doi: 10.1002/chem.201201519. PubMed DOI
Bartosik M., Hrstka R., Palecek E., Vojtesek B. Adsorptive transfer stripping for quick electrochemical determination of microRNAs in total RNA samples. Electroanalysis. 2014;26:2558–2562. doi: 10.1002/elan.201400449. DOI
Fojta M., Jelen F., Havran L., Palecek E. Electrochemical stripping techniques in analysis of nucleic acids and their constituents. Curr. Anal. Chem. 2008;4:250–262. doi: 10.2174/157341108784911415. DOI
Palecek E., Wang J. Electrochemistry of nucleic acids and proteins-towards electrochemical sensors for genomics and proteomics preface. In: Palecek E., Scheller F., Wang J., editors. Electrochemistry of Nucleic Acids and Proteins: Towards Electrochemical Sensors for Genomics and Proteomics. Volume 1. Elsevier Science Bv; Amsterdam, The Netherlands: 2005. pp. XV–XVII.
Ribeiro J.A., Pereira C.M., Silva F. Electrochemistry of the interaction between bioactive drugs daunorubicin and dopamine and DNA at a water/oil interface. Electrochim. Acta. 2015;180:687–694. doi: 10.1016/j.electacta.2015.08.074. DOI
Masarik M., Kizek R., Kramer K.J., Billova S., Brazdova M., Vacek J., Bailey M., Jelen F., Howard J.A. Application of avidin-biotin technology and adsorptive transfer stripping square-wave voltammetry for detection of DNA hybridization and avidin in transgenic avidin maize. Anal. Chem. 2003;75:2663–2669. doi: 10.1021/ac020788z. PubMed DOI
Gammoh N., Grm H.S., Massimi P., Banks L. Regulation of human papillomavirus type 16 E7 activity through direct protein interaction with the E2 transcriptional activator. J. Virol. 2006;80:1787–1797. doi: 10.1128/JVI.80.4.1787-1797.2006. PubMed DOI PMC
Haugg A.M., Rennspiess D., zur Hausen A., Speel E.J.M., Cathomas G., Becker J.C., Schrama D. Fluorescence in situ hybridization and qPCR to detect Merkel cell polyomavirus physical status and load in Merkel cell carcinomas. Int. J. Cancer. 2014;135:2804–2815. doi: 10.1002/ijc.28931. PubMed DOI
Heidegger I., Pichler R., Muller B., Klocker H., Oswald D., Haid B., Zelger B., Horninger W., Oswald J. Is real-time PCR the correct method to evaluate the incidence of human papillomavirus in prepuces of asymptomatic boys and men? World J. Urol. 2014;32:1199–1204. doi: 10.1007/s00345-013-1190-4. PubMed DOI
Krejcova L., Nguyen H.V., Hynek D., Guran R., Adam V., Kizek R. Paramagnetic particles and PNA probe for automated separation and electrochemical detection of influenza. Chromatographia. 2014;77:1425–1432. doi: 10.1007/s10337-014-2737-2. DOI
Krejcova L., Hynek D., Guran R., Michalek P., Moulick A., Kopel P., Tmejova K., Hoai N.V., Adam V., Hubalek J., et al. Beads based electrochemical assay for detection of hemagglutinin labeled by two different types of cadmium quantum dots. Int. J. Electrochem. Sci. 2014;9:3349–3363.
Krejcova L., Nejdl L., Rodrigo M.A.M., Zurek M., Matousek M., Hynek D., Zitka O., Kopel P., Adam V., Kizek R. 3D printed chip for electrochemical detection of influenza virus labeled with CdS quantum dots. Biosens. Bioelectron. 2014;54:421–427. doi: 10.1016/j.bios.2013.10.031. PubMed DOI
Abreu A.L.P., Souza R.P., Gimenes F., Consolaro M.E.L. A review of methods for detect human Papillomavirus infection. Virol. J. 2012;9 doi: 10.1186/1743-422X-9-262. PubMed DOI PMC
Jampasa S., Wonsawat W., Rodthongkum N., Siangproh W., Yanatatsaneejit P., Vilaivan T., Chailapakul O. Electrochemical detection of human papillomavirus DNA type 16 using a pyrrolidinyl peptide nucleic acid probe immobilized on screen-printed carbon electrodes. Biosens. Bioelectron. 2014;54:428–434. doi: 10.1016/j.bios.2013.11.023. PubMed DOI
Wang S., Li L., Jin H., Yang T., Bao W., Huang S., Wang J. Electrochemical detection of hepatitis B and papilloma virus DNAs using SWCNT array coated with gold nanoparticles. Biosens. Bioelectron. 2013;41:205–210. doi: 10.1016/j.bios.2012.08.021. PubMed DOI
Huang H., Bai W., Dong C., Guo R., Liu Z. An ultrasensitive electrochemical DNA biosensor based on graphene/Au nanorod/polythionine for human papillomavirus DNA detection. Biosens. Bioelectron. 2015;68:442–446. doi: 10.1016/j.bios.2015.01.039. PubMed DOI
Bartolome J.P., Echegoyen L., Fragoso A. Reactive carbon nano-onion modified glassy carbon surfaces as DNA sensors for human papillomavirus oncogene detection with enhanced sensitivity. Anal. Chem. 2015;87:6744–6751. doi: 10.1021/acs.analchem.5b00924. PubMed DOI
Campos-Ferreira D.S., Souza E.V.M., Nascimento G.A., Zanforlin D.M.L., Arruda M.S., Beltrão M.F.S., Melo A.L., Bruneska D., Lima-Filho J.L. Electrochemical DNA biosensor for the detection of human papillomavirus E6 gene inserted in recombinant plasmid. Arab. J. Chem. 2014:1–8. doi: 10.1016/j.arabjc.2014.05.023. DOI
Sabzi R.E., Sehatnia B., Pournaghi-Azar M.H., Hejazi M.S. Electrochemical detection of human papilloma virus (HPV) target DNA using MB on pencil graphite electrode. J. Iran Chem. Soc. 2008;5:476–483. doi: 10.1007/BF03246005. DOI
Bo Y., Yang H., Hu Y., Yao T., Huang S. A novel electrochemical DNA biosensor based on graphene and polyaniline nanowires. Electrochim. Acta. 2011;56:2676–2681. doi: 10.1016/j.electacta.2010.12.034. DOI
Zari N., Amine A., Ennaji M.M. Label-free DNA biosensor for electrochemical detection of short DNA sequences related to human papilloma virus. Anal. Lett. 2009;42:519–535. doi: 10.1080/00032710802421897. DOI