Heme oxygenase is not involved in the anti-proliferative effects of statins on pancreatic cancer cells
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27175805
PubMed Central
PMC4866069
DOI
10.1186/s12885-016-2343-9
PII: 10.1186/s12885-016-2343-9
Knihovny.cz E-zdroje
- Klíčová slova
- Heme, Heme oxygenase, Pancreatic cancer, Statins,
- MeSH
- apoptóza účinky léků MeSH
- hemoxygenasa-1 genetika metabolismus MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- lidé MeSH
- messenger RNA genetika MeSH
- nádorové buňky kultivované MeSH
- nádory slinivky břišní farmakoterapie metabolismus patologie MeSH
- pankreas metabolismus MeSH
- pohyb buněk účinky léků MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- proliferace buněk účinky léků MeSH
- Ras proteiny genetika metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- signální transdukce MeSH
- statiny farmakologie MeSH
- western blotting MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hemoxygenasa-1 MeSH
- messenger RNA MeSH
- Ras proteiny MeSH
- reaktivní formy kyslíku MeSH
- statiny MeSH
BACKGROUND: Pancreatic cancer is recognized as one of the most fatal tumors due to its aggressiveness and resistance to therapy. Statins were previously shown to inhibit the proliferation of cancer cells via various signaling pathways. In healthy tissues, statins activate the heme oxygenase pathway, nevertheless the role of heme oxygenase in pancreatic cancer is still controversial. The aim of this study was to evaluate, whether anti-proliferative effects of statins in pancreatic cancer cells are mediated via the heme oxygenase pathway. METHODS: In vitro effects of various statins and hemin, a heme oxygenase inducer, on cell proliferation were evaluated in PA-TU-8902, MiaPaCa-2 and BxPC-3 human pancreatic cancer cell lines. The effect of statins on heme oxygenase activity was assessed and heme oxygenase-silenced cells were used for pancreatic cancer cell proliferation studies. Cell death rate and reactive oxygen species production were measured in PA-TU-8902 cells, followed by evaluation of the effect of cerivastatin on GFP-K-Ras trafficking and expression of markers of invasiveness, osteopontin (SPP1) and SOX2. RESULTS: While simvastatin and cerivastatin displayed major anti-proliferative properties in all cell lines tested, pravastatin did not affect the cell growth at all. Strong anti-proliferative effect was observed also for hemin. Co-treatment of cerivastatin and hemin increased anti-proliferative potential of these agents, via increased production of reactive oxygen species and cell death compared to individual treatment. Heme oxygenase silencing did not prevent pancreatic cancer cells from the tumor-suppressive effect of cerivastatin or hemin. Cerivastatin, but not pravastatin, protected Ras protein from trafficking to the cell membrane and significantly reduced expressions of SPP1 (p < 0.05) and SOX2 (p < 0.01). CONCLUSIONS: Anti-proliferative effects of statins and hemin on human pancreatic cancer cell lines do not seem to be related to the heme oxygenase pathway. While hemin triggers reactive oxygen species-induced cell death, cerivastatin targets Ras protein trafficking and affects markers of invasiveness.
Institute of Biotechnology Czech Academy of Sciences Videnska 1083 Prague 4 142 20 Czech Republic
School of Medical Science Griffith University Parklands Avenue 4222 Southport QLD Australia
Zobrazit více v PubMed
Vitek L, Lenicek M. Cytoprotective and antiproliferative effects of HMG-CoA reductase inhibitors. Curr Enz Inhib. 2006;2:261–80. doi: 10.2174/157340806777934775. DOI
Hawk MA, Cesen KT, Siglin JC, Stoner GD, Ruch RJ. Inhibition of lung tumor cell growth in vitro and mouse lung tumor formation by lovastatin. Cancer Lett. 1996;109(1–2):217–22. doi: 10.1016/S0304-3835(96)04465-5. PubMed DOI
Agarwal B, Bhendwal S, Halmos B, Moss SF, Ramey WG, Holt PR. Lovastatin augments apoptosis induced by chemotherapeutic agents in colon cancer cells. Clin Cancer Res. 1999;5(8):2223–9. PubMed
Gbelcova H, Lenicek M, Zelenka J, Knejzlik Z, Dvorakova G, Zadinova M, et al. Differences in antitumor effects of various statins on human pancreatic cancer. Int J Cancer. 2008;122(6):1214–21. doi: 10.1002/ijc.23242. PubMed DOI
Sumi S, Beauchamp RD, Townsend CM, Uchida T, Murakami M, Rajaraman S, et al. Inhibition of pancreatic adenocarcinoma cell growth by lovastatin. Gastroenterology. 1992;103(3):982–9. PubMed
Kusama T, Mukai M, Iwasaki T, Tatsuta M, Matsumoto Y, Akedo H, et al. Inhibition of epidermal growth factor-induced RhoA translocation and invasion of human pancreatic cancer cells by 3-hydroxy-3-methylglutaryl-coenzyme a reductase inhibitors. Cancer Res. 2001;61(12):4885–91. PubMed
Kusama T, Mukai M, Iwasaki T, Tatsuta M, Matsumoto Y, Akedo H, et al. 3-hydroxy-3-methylglutaryl-coenzyme a reductase inhibitors reduce human pancreatic cancer cell invasion and metastasis. Gastroenterology. 2002;122(2):308–17. doi: 10.1053/gast.2002.31093. PubMed DOI
Elson CE, Peffley DM, Hentosh P, Mo H. Isoprenoid-mediated inhibition of mevalonate synthesis: potential application to cancer. Proc Soc Exp Biol Med. 1999;221(4):294–311. doi: 10.3181/00379727-221-44413. PubMed DOI
Sebti SM. Protein farnesylation: implications for normal physiology, malignant transformation, and cancer therapy. Cancer Cell. 2005;7(4):297–300. doi: 10.1016/j.ccr.2005.04.005. PubMed DOI
Pronk GJ, Bos JL. The role of p21ras in receptor tyrosine kinase signalling. Biochim Biophys Acta. 1994;1198(2–3):131–47. PubMed
Hall A. Rho GTPases and the actin cytoskeleton. Science. 1998;279(5350):509–14. doi: 10.1126/science.279.5350.509. PubMed DOI
Bondar VM, Sweeney-Gotsch B, Andreeff M, Mills GB, McConkey DJ. Inhibition of the phosphatidylinositol 3’-kinase-AKT pathway induces apoptosis in pancreatic carcinoma cells in vitro and in vivo. Mol Cancer Ther. 2002;1(12):989–97. PubMed
Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell. 1988;53(4):549–54. doi: 10.1016/0092-8674(88)90571-5. PubMed DOI
Ryter SW, Alam J, Choi AM. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev. 2006;86(2):583–650. doi: 10.1152/physrev.00011.2005. PubMed DOI
Willis D, Moore AR, Frederick R, Willoughby DA. Heme oxygenase: a novel target for the modulation of the inflammatory response. Nat Med. 1996;2:87–90. doi: 10.1038/nm0196-87. PubMed DOI
Lin Q, Weis S, Yang G, Weng YH, Helston R, Rish K, et al. Heme oxygenase-1 protein localizes to the nucleus and activates transcription factors important in oxidative stress. J Biol Chem. 2007;282(28):20621–33. doi: 10.1074/jbc.M607954200. PubMed DOI
Liu H, Nowak R, Chao W, Bloch KD. Nerve growth factor induces anti-apoptotic heme oxygenase-1 in rat pheochromocytoma PC12 cells. J Neurochem. 2003;86(6):1553–63. doi: 10.1046/j.1471-4159.2003.01978.x. PubMed DOI
Wegiel B, Nemeth Z, Correa-Costa M, Bulmer AC, Otterbein LE. Heme oxygenase-1: a metabolic nike. Antioxid Redox Signal. 2014;20(11):1709–22. doi: 10.1089/ars.2013.5667. PubMed DOI PMC
Was H, Dulak J, Jozkowicz A. Heme oxygenase-1 in tumor biology and therapy. Curr Drug Targets. 2010;11(12):1551–70. doi: 10.2174/1389450111009011551. PubMed DOI
Grosser N, Erdmann K, Hemmerle A, Berndt G, Hinkelmann U, Smith G, et al. Rosuvastatin upregulates the antioxidant defense protein heme oxygenase-1. Biochem Biophys Res Commun. 2004;325(3):871–6. doi: 10.1016/j.bbrc.2004.10.123. PubMed DOI
Grosser N, Hemmerle A, Berndt G, Erdmann K, Hinkelmann U, Schurger S, et al. The antioxidant defense protein heme oxygenase 1 is a novel target for statins in endothelial cells. Free Radic Biol Med. 2004;37(12):2064–71. doi: 10.1016/j.freeradbiomed.2004.09.009. PubMed DOI
Lee TS, Chang CC, Zhu Y, Shyy JYJ. Simvastatin induces heme oxygenase-1 - A novel mechanism of vessel protection. Circulation. 2004;110(10):1296–302. doi: 10.1161/01.CIR.0000140694.67251.9C. PubMed DOI
Hsu M, Muchova L, Morioka I, Wong RJ, Schroder H, Stevenson DK. Tissue-specific effects of statins on the expression of heme oxygenase-1 in vivo. Biochem Biophys Res Commun. 2006;343(3):738–44. doi: 10.1016/j.bbrc.2006.03.036. PubMed DOI
Muchova L, Wong RJ, Hsu M, Morioka I, Vitek L, Zelenka J, et al. Statin treatment increases formation of carbon monoxide and bilirubin in mice: a novel mechanism of in vivo antioxidant protection. Can J Physiol Pharmacol. 2007;85(8):800–10. doi: 10.1139/Y07-077. PubMed DOI
Berberat PO, Dambrauskas Z, Gulbinas A, Giese T, Giese N, Kunzli B, et al. Inhibition of heme oxygenase-1 increases responsiveness of pancreatic cancer cells to anticancer treatment. Clin Cancer Res. 2005;11(10):3790–8. doi: 10.1158/1078-0432.CCR-04-2159. PubMed DOI
Muchova L, Vanova K, Suk J, Micuda S, Dolezelova E, Fuksa L, et al. Protective effect of heme oxygenase induction in ethinylestradiol-induced cholestasis. J Cell Mol Med. 2015;19(5):924–33. doi: 10.1111/jcmm.12401. PubMed DOI PMC
Vreman HJ, Stevenson DK. Heme oxygenase activity as measured by carbon monoxide production. Anal Biochem. 1988;168(1):31–8. doi: 10.1016/0003-2697(88)90006-1. PubMed DOI
Kita K, Saito S, Morioka CY, Watanabe A. Growth inhibition of human pancreatic cancer cell lines by anti-sense oligonucleotides specific to mutated K-ras genes. Int J Cancer. 1999;80(4):553–8. doi: 10.1002/(SICI)1097-0215(19990209)80:4<553::AID-IJC12>3.0.CO;2-6. PubMed DOI
Hamidi H, Lu M, Chau K, Anderson L, Fejzo M, Ginther C, et al. KRAS mutational subtype and copy number predict in vitro response of human pancreatic cancer cell lines to MEK inhibition. Br J Cancer. 2014;111(9):1788–801. doi: 10.1038/bjc.2014.475. PubMed DOI PMC
Hinkelmann U, Grosser N, Erdmann K, Schroder H, Immenschuh S. Simvastatin-dependent up-regulation of heme oxygenase-1 via mRNA stabilization in human endothelial cells. Eur J Pharm Sci. 2010;41(1):118–24. doi: 10.1016/j.ejps.2010.05.021. PubMed DOI
Vaccaro V, Sperduti I, Vari S, Bria E, Melisi D, Garufi C, et al. Metastatic pancreatic cancer: Is there a light at the end of the tunnel? World J Gastroenterol. 2015;21(16):4788–801. doi: 10.3748/wjg.v21.i16.4788. PubMed DOI PMC
Khurana V, Sheth A, Caldito G, Barkin JS. Statins reduce the risk of pancreatic cancer in humans: a case–control study of half a million veterans. Pancreas. 2007;34(2):260–5. doi: 10.1097/MPA.0b013e318030e963. PubMed DOI
Walker EJ, Ko AH, Holly EA, Bracci PM. Statin use and risk of pancreatic cancer: results from a large, clinic-based case–control study. Cancer. 2015;121(8):1287–94. doi: 10.1002/cncr.29256. PubMed DOI PMC
Sunamura M, Duda DG, Ghattas MH, Lozonschi L, Motoi F, Yamauchi J, et al. Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer. Angiogenesis. 2003;6(1):15–24. doi: 10.1023/A:1025803600840. PubMed DOI
Glei M, Klenow S, Sauer J, Wegewitz U, Richter K, Pool-Zobel BL. Hemoglobin and hemin induce DNA damage in human colon tumor cells HT29 clone 19A and in primary human colonocytes. Mutat Res. 2006;594(1–2):162–71. doi: 10.1016/j.mrfmmm.2005.08.006. PubMed DOI
Tsuji A, Wang J, Stenzel KH, Novogrodsky A. Immune stimulatory and anti-tumour properties of haemin. Clin Exp Immunol. 1993;93(3):308–12. doi: 10.1111/j.1365-2249.1993.tb08177.x. PubMed DOI PMC
Vitek L. Statins and pancreatic cancer: are all statins the same? Am J Gastroenterol. 2009;104(2):525. doi: 10.1038/ajg.2008.103. PubMed DOI
Qi XF, Zheng L, Lee KJ, Kim DH, Kim CS, Cai DQ, et al. HMG-CoA reductase inhibitors induce apoptosis of lymphoma cells by promoting ROS generation and regulating Akt, Erk and p38 signals via suppression of mevalonate pathway. Cell Death Dis. 2013;4 doi: 10.1038/cddis.2013.44. PubMed DOI PMC
Collins MA, Pasca di Magliano M. Kras as a key oncogene and therapeutic target in pancreatic cancer. Front Physiol. 2013;4:407. PubMed PMC
Zhivkova-Galunska M, Adwan H, Eyol E, Kleeff J, Kolb A, Bergmann F, et al. Osteopontin but not osteonectin favors the metastatic growth of pancreatic cancer cell lines. Canc Biol Ther. 2010;10(1):54–64. doi: 10.4161/cbt.10.1.12161. PubMed DOI
Sanada Y, Yoshida K, Ohara M, Oeda M, Konishi K, Tsutani Y. Histopathologic evaluation of stepwise progression of pancreatic carcinoma with immunohistochemical analysis of gastric epithelial transcription factor SOX2: comparison of expression patterns between invasive components and cancerous or nonneoplastic intraductal components. Pancreas. 2006;32(2):164–70. doi: 10.1097/01.mpa.0000202947.80117.a0. PubMed DOI
Li JJ, Li HY, Gu F. Diagnostic significance of serum osteopontin level for pancreatic cancer: a meta-analysis. Genet Test Mol Biomarkers. 2014;18(8):580–6. doi: 10.1089/gtmb.2014.0102. PubMed DOI
Herreros-Villanueva M, Bujanda L, Billadeau DD, Zhang JS. Embryonic stem cell factors and pancreatic cancer. World J Gastroenterol. 2014;20(9):2247–54. doi: 10.3748/wjg.v20.i9.2247. PubMed DOI PMC