• This record comes from PubMed

Symmetry breaking in spreading RAT2 fibroblasts requires the MAPK/ERK pathway scaffold RACK1 that integrates FAK, p190A-RhoGAP and ERK2 signaling

. 2016 Sep ; 1863 (9) : 2189-200. [epub] 20160519

Language English Country Netherlands Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

The spreading of adhering cells is a morphogenetic process during which cells break spherical or radial symmetry and adopt migratory polarity with spatially segregated protruding cell front and non-protruding cell rear. The organization and regulation of these symmetry-breaking events, which are both complex and stochastic, are not fully understood. Here we show that in radially spreading cells, symmetry breaking commences with the development of discrete non-protruding regions characterized by large but sparse focal adhesions and long peripheral actin bundles. Establishment of this non-protruding static region specifies the distally oriented protruding cell front and thus determines the polarity axis and the direction of cell migration. The development of non-protruding regions requires ERK2 and the ERK pathway scaffold protein RACK1. RACK1 promotes adhesion-mediated activation of ERK2 that in turn inhibits p190A-RhoGAP signaling by reducing the peripheral localization of p190A-RhoGAP. We propose that sustained ERK signaling at the prospective cell rear induces p190A-RhoGAP depletion from the cell periphery resulting in peripheral actin bundles and cell rear formation. Since cell adhesion activates both ERK and p190A-RhoGAP signaling this constitutes a spatially confined incoherent feed-forward signaling circuit.

References provided by Crossref.org

Find record

Citation metrics

Loading data ...

    Archiving options