Comprehensive thermal preference phenotyping in mice using a novel automated circular gradient assay
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27227099
PubMed Central
PMC4861200
DOI
10.1080/23328940.2015.1135689
PII: 1135689
Knihovny.cz E-zdroje
- Klíčová slova
- TRPA1, TRPM8, nociception, skew, thermal selection, thermosensation,
- Publikační typ
- časopisecké články MeSH
Currently available behavioral assays to quantify normal cold sensitivity, cold hypersensitivity and cold hyperalgesia in mice have betimes created conflicting results in the literature. Some only capture a limited spectrum of thermal experiences, others are prone to experimenter bias or are not sensitive enough to detect the contribution of ion channels to cold sensing because in mice smaller alterations in cold nociception do not manifest as frank behavioral changes. To overcome current limitations we have designed a novel device that is automated, provides a high degree of freedom, i.e. thermal choice, and eliminates experimenter bias. The device represents a thermal gradient assay designed as a circular running track. It allows discerning exploratory behavior from thermal selection behavior and provides increased accuracy by providing measured values in duplicate and by removing edge artifacts. Our custom-designed automated offline analysis by a blob detection algorithm is devoid of movement artifacts, removes light reflection artifacts and provides an internal quality control parameter which we validated. The assay delivers discrete information on a large range of parameters extracted from the occupancy of thermally defined zones such as preference temperature and skew of the distribution. We demonstrate that the assay allows increasingly accurate phenotyping of thermal sensitivity in transgenic mice by disclosing yet unrecognized details on the phenotypes of TRPM8-, TRPA1- and TRPM8/A1-deficient mice.
Zobrazit více v PubMed
Vriens J, Nilius B, Voets T. Peripheral thermosensation in mammals. Nat Rev Neurosci 2014; 15:573-89; PMID:25053448; http://dx.doi.org/10.1038/nrn3784 PubMed DOI
Romanovsky AA. Skin temperature: its role in thermoregulation. Acta Physiol (Oxf) 2014; 210:498-507; PMID:24716231; http://dx.doi.org/10.1111/apha.12231 PubMed DOI PMC
Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, et al.. A TRP channel that senses cold stimuli and menthol. Cell 2002; 108:705-15; PMID:11893340; http://dx.doi.org/10.1016/S0092-8674(02)00652-9 PubMed DOI
McKemy DD, Neuhausser WM, Julius D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 2002; 416:52-8; PMID:11882888; http://dx.doi.org/10.1038/nature719 PubMed DOI
Colburn RW, Lubin ML, Stone DJ Jr, Wang Y, Lawrence D, D'Andrea MR, Brandt MR, Liu Y, Flores CM, Qin N. Attenuated cold sensitivity in TRPM8 null mice. Neuron 2007; 54:379-86; PMID:17481392; http://dx.doi.org/10.1016/j.neuron.2007.04.017 PubMed DOI
Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, Jordt SE, Julius D. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 2007; 448:204-8; PMID:17538622; http://dx.doi.org/10.1038/nature05910 PubMed DOI
Dhaka A, Murray AN, Mathur J, Earley TJ, Petrus MJ, Patapoutian A. TRPM8 is required for cold sensation in mice. Neuron 2007; 54:371-8; PMID:17481391; http://dx.doi.org/10.1016/j.neuron.2007.02.024 PubMed DOI
Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 2004; 41:849-57; PMID:15046718; http://dx.doi.org/10.1016/S0896-6273(04)00150-3 PubMed DOI
Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI, Julius D. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 2006; 124:1269-82; PMID:16564016; http://dx.doi.org/10.1016/j.cell.2006.02.023 PubMed DOI
Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, et al.. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 2003; 112:819-29; PMID:12654248; http://dx.doi.org/10.1016/S0092-8674(03)00158-2 PubMed DOI
Moparthi L, Survery S, Kreir M, Simonsen C, Kjellbom P, Högestätt ED, Johanson U, Zygmunt PM. Human TRPA1 is intrinsically cold- and chemosensitive with and without its N-terminal ankyrin repeat domain. Proc Natl Acad Sci U S A 2014; 111:16901-6; PMID:25389312; http://dx.doi.org/10.1073/pnas.1412689111 PubMed DOI PMC
Knowlton WM, Bifolck-Fisher A, Bautista DM, McKemy DD. TRPM8, but not TRPA1, is required for neural and behavioral responses to acute noxious cold temperatures and cold-mimetics in vivo. Pain 2010; 150:340-50; PMID:20542379; http://dx.doi.org/10.1016/j.pain.2010.05.021 PubMed DOI PMC
del Camino D, Murphy S, Heiry M, Barrett LB, Earley TJ, Cook CA, Petrus MJ, Zhao M, D'Amours M, Deering N, et al.. TRPA1 contributes to cold hypersensitivity. J Neurosci 2010; 30:15165-74; PMID:21068322; http://dx.doi.org/10.1523/JNEUROSCI.2580-10.2010 PubMed DOI PMC
Obata K, Katsura H, Mizushima T, Yamanaka H, Kobayashi K, Dai Y, Fukuoka T, Tokunaga A, Tominaga M, Noguchi K. TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J Clin Invest 2005; 115:2393-401; PMID:16110328; http://dx.doi.org/10.1172/JCI25437 PubMed DOI PMC
Kwan KY, Allchorne AJ, Vollrath MA, Christensen AP, Zhang DS, Woolf CJ, Corey DP. TRPA1 contributes to cold, mechanical, and chemical Nociception but is not essential for hair-cell transduction. Neuron 2006; 50:277-89; PMID:16630838; http://dx.doi.org/10.1016/j.neuron.2006.03.042 PubMed DOI
Karashima Y, Talavera K, Everaerts W, Janssens A, Kwan KY, Vennekens R, Nilius B, Voets T. TRPA1 acts as a cold sensor in vitro and in vivo. Proc Natl Acad Sci U S A 2009; 106:1273-8; PMID:19144922; http://dx.doi.org/10.1073/pnas.0808487106 PubMed DOI PMC
Pogorzala LA, Mishra SK, Hoon MA. The cellular code for mammalian thermosensation. J Neurosci 2013; 33:5533-41; PMID:23536068; http://dx.doi.org/10.1523/JNEUROSCI.5788-12.2013 PubMed DOI PMC
Vetter I, Touska F, Hess A, Hinsbey R, Sattler S, Lampert A, Sergejeva M, Sharov A, Collins LS, Eberhardt M, et al.. Ciguatoxins activate specific cold pain pathways to elicit burning pain from cooling. EMBO J 2012; 31:3795-808; PMID:22850668; http://dx.doi.org/10.1038/emboj.2012.207 PubMed DOI PMC
Carlisle HJ, Frost TS, Stock MJ. Thermal preference behavior following clonidine, norepinephrine, isoproterenol, and ephedrine. Physiol Behav 1999; 66:585-9; PMID:10386901; http://dx.doi.org/10.1016/S0031-9384(98)00328-X PubMed DOI
Refinetti R, Carlisle HJ. Effects of lateral hypothalamic lesions on thermoregulation in the rat. Physiol Behav 1986; 38:219-28; PMID:3797489; http://dx.doi.org/10.1016/0031-9384(86)90157-5 PubMed DOI
Gordon CJ. Twenty-four-hour control of body temperature in rats. I. Integration of behavioral and autonomic effectors. Am J Physiol 1994; 267:R71-77; PMID:8048648 PubMed
Gordon CJ, Becker P, Killough P, Padnos B. Behavioral determination of the preferred foot pad temperature of the mouse. J Therm Biol 2000; 25:211-9; http://dx.doi.org/10.1016/S0306-4565(99)00025-X DOI
Gordon CJ, Kimm-Brinson KL, Padnos B, Ramsdell JS. Acute and delayed thermoregulatory response of mice exposed to brevetoxin. Toxicon 2001; 39:1367-74; PMID:11384725; http://dx.doi.org/10.1016/S0041-0101(01)00092-7 PubMed DOI
Vetter I, Hein A, Sattler S, Hessler S, Touska F, Bressan E, Parra A, Hager U, Leffler A, Boukalova S, et al.. Amplified cold transduction in native nociceptors by M-channel inhibition. J Neurosci 2013; 33:16627-41; PMID:24133266; http://dx.doi.org/10.1523/JNEUROSCI.1473-13.2013 PubMed DOI PMC
Knowlton WM, Palkar R, Lippoldt EK, McCoy DD, Baluch F, Chen J, McKemy DD. A sensory-labeled line for cold: TRPM8-expressing sensory neurons define the cellular basis for cold, cold pain, and cooling-mediated analgesia. J Neurosci 2013; 33:2837-48; PMID:23407943; http://dx.doi.org/10.1523/JNEUROSCI.1943-12.2013 PubMed DOI PMC
Brodkin J, Frank D, Grippo R, Hausfater M, Gulinello M, Achterholt N, Gutzen C. Validation and implementation of a novel high-throughput behavioral phenotyping instrument for mice. J Neurosci Methods 2014; 224:48-57. PubMed PMC
Yin K, Zimmermann K, Vetter I, Lewis RJ. Therapeutic opportunities for targeting cold pain pathways. Biochem Pharmacol 2015; 93:125-40; PMID:25316567; http://dx.doi.org/10.1016/j.bcp.2014.09.024 PubMed DOI
Campero M, Serra J, Bostock H, Ochoa JL. Slowly conducting afferents activated by innocuous low temperature in human skin. J Physiol 2001; 535:855-65; PMID:11559780; http://dx.doi.org/10.1111/j.1469-7793.2001.t01-1-00855.x PubMed DOI PMC
Fujita F, Uchida K, Takaishi M, Sokabe T, Tominaga M. Ambient temperature affects the temperature threshold for TRPM8 activation through interaction of phosphatidylinositol 4,5-bisphosphate. J Neurosci 2013; 33:6154-9; PMID:23554496; http://dx.doi.org/10.1523/JNEUROSCI.5672-12.2013 PubMed DOI PMC
Zimmermann K, Hein A, Hager U, Kaczmarek JS, Turnquist BP, Clapham DE, Reeh PW. Phenotyping sensory nerve endings in vitro in the mouse. Nat Protoc 2009; 4:174-96; PMID:19180088; http://dx.doi.org/10.1038/nprot.2008.223 PubMed DOI PMC
Brenner DS, Golden JP, Vogt SK, Dhaka A, Story GM, Gereau Iv RW. A dynamic set point for thermal adaptation requires phospholipase C-mediated regulation of TRPM8 in vivo. Pain 2014; 155:2124-33; PMID:25109670; http://dx.doi.org/10.1016/j.pain.2014.08.001 PubMed DOI PMC
Zimmermann K, Lennerz JK, Hein A, Link AS, Kaczmarek JS, Delling M, Uysal S, Pfeifer JD, Riccio A, Clapham DE. Transient receptor potential cation channel, subfamily C, member 5 (TRPC5) is a cold-transducer in the peripheral nervous system. Proc Natl Acad Sci U S A 2011; 108:18114-9; PMID:22025699; http://dx.doi.org/10.1073/pnas.1115387108 PubMed DOI PMC
Toro CA, Eger S, Veliz L, Sotelo-Hitschfeld P, Cabezas D, Castro MA, Zimmermann K, Brauchi S. Agonist-dependent modulation of cell surface expression of the cold receptor TRPM8. J Neurosci 2015; 35:571-82; PMID:25589752; http://dx.doi.org/10.1523/JNEUROSCI.3820-13.2015 PubMed DOI PMC
Lee HS, Iida T, Mizuno A, Suzuki M, Caterina MJ. Altered thermal selection behavior in mice lacking transient receptor potential vanilloid 4. J Neurosci 2005; 25:1304-10; PMID:15689568; http://dx.doi.org/10.1523/JNEUROSCI.4745.04.2005 PubMed DOI PMC
Huang SM, Li X, Yu Y, Wang J, Caterina MJ. TRPV3 and TRPV4 ion channels are not major contributors to mouse heat sensation. Mol Pain 2011; 7:37; PMID:21586160; http://dx.doi.org/10.1186/1744-8069-7-37 PubMed DOI PMC
Aubdool AA, Graepel R, Kodji X, Alawi KM, Bodkin JV, Srivastava S, Gentry C, Heads R, Grant AD, Fernandes ES, et al.. TRPA1 is essential for the vascular response to environmental cold exposure. Nat Commun 2014; 5:5732. PubMed PMC
Gentry C, Stoakley N, Andersson DA, Bevan S. The roles of iPLA2, TRPM8 and TRPA1 in chemically induced cold hypersensitivity. Mol Pain 2010; 6:4; PMID:20092626; http://dx.doi.org/10.1186/1744-8069-6-4 PubMed DOI PMC
McCoy ES, Taylor-Blake B, Street SE, Pribisko AL, Zheng J, Zylka MJ. Peptidergic CGRP α Primary Sensory Neurons Encode Heat and Itch and Tonically Suppress Sensitivity to Cold. Neuron 2013; 78:138-51; PMID:23523592; http://dx.doi.org/10.1016/j.neuron.2013.01.030 PubMed DOI PMC
Clapham DE, Miller C. A thermodynamic framework for understanding temperature sensing by transient receptor potential (TRP) channels. Proc Natl Acad Sci U S A 2011; 108:19492-7; PMID:22109551; http://dx.doi.org/10.1073/pnas.1117485108 PubMed DOI PMC
Deuis JR, Zimmermann K, Romanovsky AA, Possani LD, Cabot PJ, Lewis RJ, Vetter I. An animal model of oxaliplatin-induced cold allodynia reveals a crucial role for Nav1.6 in peripheral pain pathways. Pain 2013; 154:1749-57; PMID:23711479; http://dx.doi.org/10.1016/j.pain.2013.05.032 PubMed DOI PMC
Zimmermann K, Deuis JR, Inserra MC, Collins LS, Namer B, Cabot PJ, Reeh PW, Lewis RJ, Vetter I. Analgesic treatment of ciguatoxin-induced cold allodynia. Pain 2013; 154:1999-2006; PMID:23778293; http://dx.doi.org/10.1016/j.pain.2013.06.015 PubMed DOI