Spatiotemporal patterns and potential sources of polychlorinated biphenyl (PCB) contamination in Scots pine (Pinus sylvestris) needles from Europe

. 2016 Oct ; 23 (19) : 19602-12. [epub] 20160708

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27392626
Odkazy

PubMed 27392626
DOI 10.1007/s11356-016-7171-6
PII: 10.1007/s11356-016-7171-6
Knihovny.cz E-zdroje

Using pine needles as a bio-sampler of atmospheric contamination is a relatively cheap and easy method, particularly for remote sites. Therefore, pine needles have been used to monitor a range of semi-volatile contaminants in the air. In the present study, pine needles were used to monitor polychlorinated biphenyls (PCBs) in the air at sites with different land use types in Sweden (SW), Czech Republic (CZ), and Slovakia (SK). Spatiotemporal patterns in levels and congener profiles were investigated. Multivariate analysis was used to aid source identification. A comparison was also made between the profile of indicator PCBs (ind-PCBs-PCBs 28, 52, 101, 138, 153, and 180) in pine needles and those in active and passive air samplers. Concentrations in pine needles were 220-5100 ng kg(-1) (∑18PCBs - ind-PCBs and dioxin-like PCBs (dl-PCBs)) and 0.045-1.7 ng toxic equivalent (TEQ) kg(-1) (dry weight (dw)). Thermal sources (e.g., waste incineration) were identified as important sources of PCBs in pine needles. Comparison of profiles in pine needles to active and passive air samplers showed a lesser contribution of lower molecular weight PCBs 28 and 52, as well as a greater contribution of higher molecular weight PCBs (e.g., 180) in pine needles. The dissimilarities in congener profiles were attributed to faster degradation of lower chlorinated congeners from the leaf surface or metabolism by the plant.

Zobrazit více v PubMed

Chemosphere. 2012 Sep;88(11):1332-9 PubMed

Environ Pollut. 2011 Jun;159(6):1592-8 PubMed

Environ Pollut. 2003;126(2):169-78 PubMed

Environ Sci Process Impacts. 2014 Feb;16(2):298-305 PubMed

Environ Sci Process Impacts. 2014 Mar;16(3):433-44 PubMed

Environ Sci Pollut Res Int. 2015 Nov;22(22):17850-9 PubMed

Chemosphere. 2009 May;75(9):1173-8 PubMed

Chemosphere. 2006 Apr;63(4):570-80 PubMed

Chemosphere. 2003 Jun;51(8):775-84 PubMed

Environ Pollut. 2004;128(1-2):3-16 PubMed

Environ Int. 2014 Mar;64:48-55 PubMed

Chemosphere. 2011 Oct;85(3):509-15 PubMed

J Environ Sci Health A Tox Hazard Subst Environ Eng. 2012;47(5):688-703 PubMed

Ecotoxicol Environ Saf. 2006 Jan;63(1):61-7 PubMed

Environ Pollut. 2009 Dec;157(12):3248-54 PubMed

Environ Sci Technol. 1995 Dec;29(12):2905-14 PubMed

J Environ Monit. 2004 Apr;6(4):305-12 PubMed

Environ Sci Technol. 2008 Jan 1;42(1):100-5 PubMed

Environ Sci Technol. 2008 Jan 15;42(2):550-5 PubMed

Chemosphere. 2003 Aug;52(5):789-97 PubMed

Arh Hig Rada Toksikol. 2007 Jun;58(2):195-9 PubMed

Environ Sci Technol. 2002 Aug 1;36(15):3224-9 PubMed

Toxicol Sci. 2006 Oct;93(2):223-41 PubMed

Chemosphere. 2007 Apr;67(9):1887-96 PubMed

Environ Pollut. 2008 Nov;156(2):403-8 PubMed

Sci Total Environ. 2007 May 15;377(2-3):296-307 PubMed

Ann Occup Hyg. 2012 Jan;56(1):37-48 PubMed

Environ Sci Technol. 2003 Sep 1;37(17):3838-44 PubMed

Sci Total Environ. 2002 May 6;290(1-3):199-224 PubMed

Chemosphere. 2013 Jan;90(1):89-94 PubMed

Environ Sci Technol. 2012 Dec 18;46(24):13334-43 PubMed

Environ Pollut. 2004;128(1-2):99-138 PubMed

J Environ Monit. 2007 Jun;9(6):557-63 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...