Toward high-resolution population genomics using archaeological samples

. 2016 Aug ; 23 (4) : 295-310. [epub] 20160719

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid27436340

Grantová podpora
MC_PC_14115 Medical Research Council - United Kingdom

The term 'ancient DNA' (aDNA) is coming of age, with over 1,200 hits in the PubMed database, beginning in the early 1980s with the studies of 'molecular paleontology'. Rooted in cloning and limited sequencing of DNA from ancient remains during the pre-PCR era, the field has made incredible progress since the introduction of PCR and next-generation sequencing. Over the last decade, aDNA analysis ushered in a new era in genomics and became the method of choice for reconstructing the history of organisms, their biogeography, and migration routes, with applications in evolutionary biology, population genetics, archaeogenetics, paleo-epidemiology, and many other areas. This change was brought by development of new strategies for coping with the challenges in studying aDNA due to damage and fragmentation, scarce samples, significant historical gaps, and limited applicability of population genetics methods. In this review, we describe the state-of-the-art achievements in aDNA studies, with particular focus on human evolution and demographic history. We present the current experimental and theoretical procedures for handling and analysing highly degraded aDNA. We also review the challenges in the rapidly growing field of ancient epigenomics. Advancement of aDNA tools and methods signifies a new era in population genetics and evolutionary medicine research.

Bioinformatics Center A A Kharkevich Institute for Information Transmission Problems Russian Academy of Sciences Moscow Russian Federation Center for Personalized Medicine Children's Hospital Los Angeles Los Angeles CA USA Spatial Sciences Institute University of Southern California Los Angeles CA USA

Center for Personalized Medicine Children's Hospital Los Angeles Los Angeles CA USA Spatial Sciences Institute University of Southern California Los Angeles CA USA

Department of Animal and Plant Sciences University of Sheffield Sheffield South Yorkshire UK

Department of Biology and Ecology Faculty of Science University of Ostrava Ostrava Czech Republic Bioinformatics Center A A Kharkevich Institute for Information Transmission Problems Russian Academy of Sciences Moscow Russian Federation

Department of Computational and Molecular Biology University of Southern California Los Angeles CA USA

Donskaya Archeologia Rostov Russia

Ecology and Evolution Unit Okinawa Institute of Science and Technology Graduate University Okinawa Japan

EPAM Systems Newtown PA USA

Institute of Evolutionary Medicine University of Zurich Zurich Switzerland

Research Center of Biotechnology RAS Moscow Russia Department of Biology Lomonosov Moscow State University Russia

School of Chemical and Biotechnology SASTRA University Tanjore India

School of Systems Biology George Mason University VA USA Research Centre for Medical Genetics Moscow Russia Atlas Biomed Group Moscow Russia

Vavilov Institute of General Genetics RAS Moscow Russia

Vavilov Institute of General Genetics RAS Moscow Russia F1 Genomics San Diego CA USA School of Systems Biology George Mason University VA USA

Vavilov Institute of General Genetics RAS Moscow Russia University of Massachusetts Medical School Worcester MA USA

Zobrazit více v PubMed

Green R. E., Krause J., Briggs A. W., et al. 2010, A draft sequence of the Neandertal genome. Science, 328, 710–22. PubMed PMC

Rasmussen M., Li Y., Lindgreen S., et al. 2010, Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature, 463, 757–62. PubMed PMC

Reich D., Green R. E., Kircher M., et al. 2010, Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature, 468, 1053–60. PubMed PMC

Meyer M., Kircher M., Gansauge M. T., et al. 2012, A high-coverage genome sequence from an archaic Denisovan individual. Science, 338, 222–6. PubMed PMC

Orlando L., Ginolhac A., Zhang G., et al. 2013, Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature, 499, 74–8. PubMed

Bos K. I., Harkins K. M., Herbig A., et al. 2014, Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature, 514, 494–7. PubMed PMC

Lazaridis I., Patterson N., Mittnik A., et al. 2014, Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature, 513, 409–13. PubMed PMC

Prufer K., Racimo F., Patterson N., et al. 2014, The complete genome sequence of a Neanderthal from the Altai Mountains. Nature, 505, 43–9. PubMed PMC

Raghavan M., DeGiorgio M., Albrechtsen A., et al. 2014, The genetic prehistory of the New World Arctic. Science, 345, 1255832. PubMed

Raghavan M., Skoglund P., Graf K. E., et al. 2014, Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature, 505, 87–91. PubMed PMC

Allentoft M. E., Sikora M., Sjogren K. G., et al. 2015, Population genomics of Bronze Age Eurasia. Nature, 522, 167–72. PubMed

Haak W., Lazaridis I., Patterson N., et al. 2015, Massive migration from the steppe was a source for Indo-European languages in Europe. Nature, 522, 207–11. PubMed PMC

Raghavan M., Steinrucken M., Harris K., et al. 2015, Population genetics. Genomic evidence for the Pleistocene and recent population history of Native Americans. Science, 349, aab3884. PubMed PMC

Skoglund P., Malmstrom H., Raghavan M., et al. 2012, Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe. Science, 336, 466–9. PubMed

Higuchi R., Bowman B., Freiberger M., Ryder O. A., Wilson A. C. 1984, DNA sequences from the quagga, an extinct member of the horse family. Nature, 312, 282–4. PubMed

Pääbo S., Poinar H., Serre D., et al. 2004, Genetic analyses from ancient DNA. Annu. Rev. Genet., 38, 645–79. PubMed

Hagelberg E., Clegg J. B. 1991, Isolation and characterization of DNA from archaeological bone. Proc. Biol. Sci., 244, 45–50. PubMed

Stone A. C., Milner G. R., Paabo S., Stoneking M. 1996, Sex determination of ancient human skeletons using DNA. Am. J. Phys. Anthropol., 99, 231–8. PubMed

Taubenberger J. K., Reid A. H., Krafft A. E., Bijwaard K. E., Fanning T. G. 1997, Initial genetic characterization of the 1918 “Spanish” influenza virus. Science, 275, 1793–6. PubMed

Poinar H. N., Schwarz C., Qi J., et al. 2006, Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science, 311, 392–4. PubMed

Lalueza-Fox C., Rompler H., Caramelli D., et al. 2007, A melanocortin 1 receptor allele suggests varying pigmentation among Neanderthals. Science, 318, 1453–5. PubMed

Krause J., Lalueza-Fox C., Orlando L., et al. 2007, The derived FOXP2 variant of modern humans was shared with Neandertals. Curr. Biol., 17, 1908–12. PubMed

Green R. E., Malaspinas A. S., Krause J., et al. 2008, A complete neandertal mitochondrial genome sequence determined by high-throughput sequencing. Cell, 134, 416–26. PubMed PMC

Gilbert M. T., Kivisild T., Gronnow B., et al. 2008, Paleo-Eskimo mtDNA genome reveals matrilineal discontinuity in Greenland. Science, 320, 1787–9. PubMed

Pedersen J. S., Valen E., Velazquez A. M., et al. 2014, Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome. Genome Res., 24, 454–66. PubMed PMC

Llorente M. G., Jones E. R., Eriksson A., et al. 2015, Ancient Ethiopian genome reveals extensive Eurasian admixture in Eastern Africa. Science, 350, 820–822. PubMed

Meyer M., Arsuaga J. L., de Filippo C., et al. 2016, Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature, 531, 504–7. PubMed

Fu Q., Posth C., Hajdinjak M., et al. 2016, The genetic history of Ice Age Europe. Nature, 534, 200–5. PubMed PMC

Paabo S., Gifford J. A., Wilson A. C. 1988, Mitochondrial DNA sequences from a 7000-year old brain. Nucleic Acids Res., 16, 9775–87. PubMed PMC

Pickrell J. K., Reich D. 2014, Toward a new history and geography of human genes informed by ancient DNA. Trends Genet., 30, 377–89. PubMed PMC

Veeramah K. R., Hammer M. F. 2014, The impact of whole-genome sequencing on the reconstruction of human population history. Nat. Rev. Genet., 15, 149–62. PubMed

Marean C. W., Anderson R. J., Bar-Matthews M., et al. 2015, A new research strategy for integrating studies of paleoclimate, paleoenvironment, and paleoanthropology. Evol. Anthropol., 24, 62–72. PubMed

Jones M. 2002, The molecule hunt: archaeology and the search for ancient DNA. Penguin: London.

Keller A., Graefen A., Ball M., et al. 2012, New insights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing. Nat. Commun., 3, 698. PubMed

Olalde I., Allentoft M. E., Sanchez-Quinto F., et al. 2014, Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European. Nature, 507, 225–8. PubMed PMC

Olalde I., Sanchez-Quinto F., Datta D., et al. 2014, Genomic analysis of the blood attributed to Louis XVI (1754-1793), king of France. Sci. Rep., 4, 4666. PubMed PMC

Cerqueira C. C., Paixao-Cortes V. R., Zambra F. M., Salzano F. M., Hunemeier T., Bortolini M. C. 2012, Predicting Homo pigmentation phenotype through genomic data: from Neanderthal to James Watson. Am. J. Hum. Biol., 24, 705–9. PubMed

Cale C. M. 2015, Forensic DNA evidence is not infallible. Nature, 526, 611. PubMed

Lohse K., Frantz L. A. 2014, Neandertal admixture in Eurasia confirmed by maximum-likelihood analysis of three genomes. Genetics, 196, 1241–51. PubMed PMC

Sankararaman S., Mallick S., Dannemann M., et al. 2014, The genomic landscape of Neanderthal ancestry in present-day humans. Nature, 507, 354–7. PubMed PMC

Vernot B., Akey J. M. 2015, Complex history of admixture between modern humans and Neandertals. Am. J. Hum. Genet., 96, 448–53. PubMed PMC

Vernot B., Akey J. M. 2014, Human evolution: genomic gifts from archaic hominins. Curr. Biol., 24, R845–8. PubMed

Vernot B., Akey J. M. 2014, Resurrecting surviving Neandertal lineages from modern human genomes. Science, 343, 1017–21. PubMed

Fu Q., Hajdinjak M., Moldovan O. T., et al. 2015, An early modern human from Romania with a recent Neanderthal ancestor. Nature, 524, 216–9. PubMed PMC

Sanchez-Quinto F., Lalueza-Fox C. 2015, Almost 20 years of Neanderthal palaeogenetics: adaptation, admixture, diversity, demography and extinction. Philos. Trans. R. Soc. Lond. B Biol. Sci., 370, 20130374. PubMed PMC

Kuhlwilm M., Gronau I., Hubisz M. J., et al. 2016, Ancient gene flow from early modern humans into Eastern Neanderthals. Nature, 530, 429–33. PubMed PMC

Wall J. D., Yang M. A., Jay F., et al. 2013, Higher levels of neanderthal ancestry in East Asians than in Europeans. Genetics, 194, 199–209. PubMed PMC

Krause J., Orlando L., Serre D., et al. 2007, Neanderthals in central Asia and Siberia. Nature, 449, 902–4. PubMed

Racimo F., Sankararaman S., Nielsen R., Huerta-Sanchez E. 2015, Evidence for archaic adaptive introgression in humans. Nat. Rev. Genet., 16, 359–71. PubMed PMC

Krause J., Fu Q., Good J. M., et al. 2010, The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature, 464, 894–7. PubMed PMC

Sawyer S., Renaud G., Viola B., et al. 2015, Nuclear and mitochondrial DNA sequences from two Denisovan individuals. Proc. Natl. Acad. Sci. U. S. A., 112, 15696–700. PubMed PMC

Reich D., Patterson N., Kircher M., et al. 2011, Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. Am. J. Hum. Genet., 89, 516–28. PubMed PMC

Krause J., Briggs A. W., Kircher M., et al. 2010, A complete mtDNA genome of an early modern human from Kostenki, Russia. Curr. Biol., 20, 231–6. PubMed

Qin P., Stoneking M. 2015, Denisovan ancestry in East Eurasian and native American populations. Mol. Biol. Evol., 32, 2665–74. PubMed

Eriksson A., Manica A. 2012, Effect of ancient population structure on the degree of polymorphism shared between modern human populations and ancient hominins. Proc. Natl. Acad. Sci. U. S. A., 109, 13956–60. PubMed PMC

Sankararaman S., Mallick S., Patterson N., Reich D. 2016, The combined landscape of Denisovan and Neanderthal ancestry in present-day humans. Curr. Biol., 26, 1241–7. PubMed PMC

Meyer M., Fu Q., Aximu-Petri A., et al. 2014, A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature, 505, 403–6. PubMed

Arsuaga J. L., Martinez I., Arnold L. J., et al. 2014, Neandertal roots: cranial and chronological evidence from Sima de los Huesos. Science, 344, 1358–63. PubMed

Arsuaga J. L., Carretero J.-M., Lorenzo C., et al. 2015, Postcranial morphology of the middle Pleistocene humans from Sima de los Huesos, Spain. PNAS, 112, 11524–9. PubMed PMC

Mathieson I., Lazaridis I., Rohland N., et al. 2015, Genome-wide patterns of selection in 230 ancient Eurasians. Nature, 528, 499–503. PubMed PMC

Anthony D. W. 2007, The horse, the wheel, and language: how Bronze-Age riders from the Eurasian steppes shaped the modern world. Princeton University Press: Princeton, N.J.; Woodstock.

Matisoo-Smith E. 2015, Ancient DNA and the human settlement of the Pacific: a review. J. Hum. Evol., 79, 93–104. PubMed

Gao S. Z., Zhang Y., Wei D., et al. 2015, Ancient DNA reveals a migration of the ancient Di-qiang populations into Xinjiang as early as the early Bronze Age. Am. J. Phys. Anthropol., 157, 71–80. PubMed

Zhao Y. B., Li H. J., Cai D. W., et al. 2010, Ancient DNA from nomads in 2500-year-old archeological sites of Pengyang, China. J Hum Genet., 55, 215–8. PubMed

Liu W., Martinon-Torres M., Cai Y. J., et al. 2015, The earliest unequivocally modern humans in southern China. Nature, 526, 696–9. PubMed

Lai C. S., Fisher S. E., Hurst J. A., Vargha-Khadem F., Monaco A. P. 2001, A forkhead-domain gene is mutated in a severe speech and language disorder. Nature, 413, 519–23. PubMed

Rasmussen S., Allentoft M. E., Nielsen K., et al. 2015, Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago. Cell, 163, 571–82. PubMed PMC

Brosch R., Gordon S. V., Marmiesse M., et al. 2002, A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc. Natl. Acad. Sci. U. S. A., 99, 3684–9. PubMed PMC

Nerlich A. G., Losch S. 2009, Paleopathology of human tuberculosis and the potential role of climate. Interdiscip. Perspect. Infect. Dis., 2009, 437187. PubMed PMC

Darling M. I., Donoghue H. D. 2014, Insights from paleomicrobiology into the indigenous peoples of pre-colonial America – a review. Mem. Inst. Oswaldo. Cruz., 109, 131–9. PubMed PMC

Adler C. J., Dobney K., Weyrich L. S., et al. 2013, Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nat. Genet., 45, 450–5, 455e451. PubMed PMC

Reid A. H., Fanning T. G., Hultin J. V., Taubenberger J. K. 1999, Origin and evolution of the 1918 “Spanish” influenza virus hemagglutinin gene. Proc. Natl. Acad. Sci. U. S. A., 96, 1651–6. PubMed PMC

Taubenberger J. K., Hultin J. V., Morens D. M. 2007, Discovery and characterization of the 1918 pandemic influenza virus in historical context. Antivir. Ther., 12, 581–91. PubMed PMC

Taubenberger J. K., Morens D. M., Fauci A. S. 2007, The next influenza pandemic: can it be predicted? JAMA, 297, 2025–7. PubMed PMC

Tumpey T. M., Basler C. F., Aguilar P. V., et al. 2005, Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science, 310, 77–80. PubMed

Tumpey T. M., Garcia-Sastre A., Taubenberger J. K., Palese P., Swayne D. E., Basler C. F. 2004, Pathogenicity and immunogenicity of influenza viruses with genes from the 1918 pandemic virus. Proc. Natl. Acad. Sci. U. S. A., 101, 3166–71. PubMed PMC

Millar C. D., Huynen L., Subramanian S., Mohandesan E., Lambert D. M. 2008, New developments in ancient genomics. Trends Ecol. Evol., 23, 386–93. PubMed

Parks M., Subramanian S., Baroni C., et al. 2015, Ancient population genomics and the study of evolution. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 370, 20130381. PubMed PMC

Haile J., Froese D. G., Macphee R. D., et al. 2009, Ancient DNA reveals late survival of mammoth and horse in interior Alaska. Proc. Natl. Acad. Sci. U. S. A., 106, 22352–7. PubMed PMC

Handt O., Hoss M., Krings M., Paabo S. 1994, Ancient DNA: methodological challenges. Experientia, 50, 524–9. PubMed

Handt O., Richards M., Trommsdorff M., et al. 1994, Molecular genetic analyses of the Tyrolean Ice Man. Science, 264, 1775–8. PubMed

Lia V. V., Confalonieri V. a., Ratto N., et al. 2007, Microsatellite typing of ancient maize: insights into the history of agriculture in southern South America. Proc. Biol. Sci. R. Soc., 274, 545–54. PubMed PMC

Haak W., Balanovsky O., Sanchez J. J., et al. 2010, Ancient DNA from European early neolithic farmers reveals their near eastern affinities. PLoS Biol., 8, e1000536. PubMed PMC

Malaspinas A. S., Lao O., Schroeder H., et al. 2014, Two ancient human genomes reveal Polynesian ancestry among the indigenous Botocudos of Brazil. Curr. Biol., 24, R1035–7. PubMed PMC

Green R. E., Briggs A. W., Krause J., et al. 2009, The Neandertal genome and ancient DNA authenticity. EMBO J., 28, 2494–502. PubMed PMC

Green R. E., Krause J., Ptak S. E., et al. 2006, Analysis of one million base pairs of Neanderthal DNA. Nature, 444, 330–6. PubMed

Dabney J., Knapp M., Glocke I., et al. 2013, Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci. U. S. A., 110, 15758–63. PubMed PMC

Gilbert M. T. P., Tomsho L. P., Rendulic S., et al. 2007, Whole-genome shotgun sequencing of mitochondria from ancient hair shafts. Science, 317, 1927–30. PubMed

Miller W., Drautz D. I., Ratan A., et al. 2008, Sequencing the nuclear genome of the extinct woolly mammoth. Nature, 456, 387–90. PubMed

Golenberg E. M. 1991, Amplification and analysis of miocene plant fossil DNA. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 333, 419–26; discussion 426–17. PubMed

Golenberg E. M., Giannasi D. E., Clegg M. T., et al. 1990, Chloroplast DNA sequence from a miocene Magnolia species. Nature, 344, 656–8. PubMed

Cano R. J., Poinar H. N. 1993, Rapid isolation of DNA from fossil and museum specimens suitable for PCR. BioTechniques, 15, 432–4, 436. PubMed

Cano R. J., Poinar H. N., Pieniazek N. J., Acra A., Poinar G. O., Jr. 1993, Amplification and sequencing of DNA from a 120-135-million-year-old weevil. Nature, 363, 536–8. PubMed

Vreeland R. H., Rosenzweig W. D., Powers D. W. 2000, Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature, 407, 897–900. PubMed

Woodward S. R., Weyand N. J., Bunnell M. 1994, DNA sequence from Cretaceous period bone fragments. Science, 266, 1229–32. PubMed

Li Y., An C.-C., Zhu Y.-X. 1995, DNA isolation and sequence analysis of dinosaur DNA from Cretaceous dinosaur egg in Xixia Henan, China. Acta Sci. Nat. Univ. Pekinensi 31, 148–52.

Cooper A., Poinar H. N. 2000, Ancient DNA: do it right or not at all. Science, 289, 1139. PubMed

Austin J. J., Ross A. J., Smith A. B., Fortey R. A., Thomas R. H. 1997, Problems of reproducibility – does geologically ancient DNA survive in amber-preserved insects? Proc. Biol. Sci., 264, 467–74. PubMed PMC

Allard M. W., Young D., Huyen Y. 1995, Detecting dinosaur DNA. Science, 268, 1192; author reply 1194. PubMed

Hedges S. B., Schweitzer M. H. 1995, Detecting dinosaur DNA. Science, 268, 1191–2; author reply 1194. PubMed

Henikoff S. 1995, Detecting dinosaur DNA. Science, 268, 1192; author reply 1194. PubMed

Zischler H., Hoss M., Handt O., von Haeseler A., van der Kuyl A. C., Goudsmit J. 1995, Detecting dinosaur DNA. Science, 268, 1192–3; author reply 1194. PubMed

Austin J. J., Smith A. B., Thomas R. H. 1997, Palaeontology in a molecular world: the search for authentic ancient DNA. Trends Ecol. Evol., 12, 303–6. PubMed

Graur D., Pupko T. 2001, The Permian bacterium that isn’t. Mol. Biol. Evol., 18, 1143–6. PubMed

Gutierrez G., Marin A. 1998, The most ancient DNA recovered from an amber-preserved specimen may not be as ancient as it seems. Mol. Biol. Evol., 15, 926–9. PubMed

Nicholls H. 2005, Ancient DNA comes of age. PLoS Biol., 3, e56. PubMed PMC

Knapp M., Lalueza-Fox C., Hofreiter M. 2015, Re-inventing ancient human DNA. Investig. Genet., 6, 4. PubMed PMC

Damgaard P. B., Margaryan A., Schroeder H., Orlando L., Willerslev E., Allentoft M. E. 2015, Improving access to endogenous DNA in ancient bones and teeth. Sci. Rep., 5, 11184. PubMed PMC

Mikheyev A. S., Tin M. M., Arora J., Seeley T. D. 2015, Museum samples reveal rapid evolution by wild honey bees exposed to a novel parasite. Nat. Commun., 6, 7991. PubMed PMC

Gansauge M. T., Meyer M. 2014, Selective enrichment of damaged DNA molecules for ancient genome sequencing. Genome Res., 24, 1543–9. PubMed PMC

Burbano H. a., Hodges E., Green R. E., et al. 2010, Targeted investigation of the Neanderthal genome by array-based sequence capture. Science, 328, 723–5. PubMed PMC

Prüfer K., Stenzel U., Hofreiter M., Pääbo S., Kelso J., Green R. E. 2010, Computational challenges in the analysis of ancient DNA. Genome Biol., 11, R47–7. PubMed PMC

Oskam C. L., Haile J., McLay E., et al. 2010, Fossil avian eggshell preserves ancient DNA. Proc. R. Soc. B. Biol. Sci., 277, 1991–2000. PubMed PMC

Poinar H., Kuch M., McDonald G., Martin P., Pääbo S. 2003, Nuclear gene sequences from a late Pleistocene sloth coprolite. Curr. Biol., 13, 1150–2. PubMed

Adcock G. J., Dennis E. S., Easteal S., et al. 2001, Mitochondrial DNA sequences in ancient Australians: implications for modern human origins. Proc. Natl. Acad. Sci. U. S. A., 98, 537–42. PubMed PMC

Noonan J. P., Coop G., Kudaravalli S., et al. 2006, Sequencing and analysis of Neanderthal genomic DNA. Science, 314, 1113–8. PubMed PMC

Briggs A. W., Good J. M., Green R. E., et al. 2009, Targeted retrieval and analysis of five Neandertal mtDNA genomes. Science, 325, 318–21. PubMed

Lalueza-Fox C., Gigli E., de la Rasilla M., et al. 2008, Genetic characterization of the ABO blood group in Neandertals. BMC Evol. Biol., 8, 342–2. PubMed PMC

Rasmussen M., Guo X., Wang Y., et al. 2011, An Aboriginal Australian genome reveals separate human dispersals into Asia. Science, 334, 94–8. PubMed PMC

Kolman C. J., Tuross N. 2000, Ancient DNA analysis of human populations. Am. J. Phys. Anthropol., 111, 5–23. PubMed

Lacan M., Keyser C., Ricaut F.-X., et al. 2011, Ancient DNA reveals male diffusion through the Neolithic Mediterranean route. Proc. Natl. Acad. Sci. U. S. A., 108, 9788–91. PubMed PMC

Shapiro B., Drummond A. J., Rambaut A., et al. 2004, Rise and fall of the Beringian Steppe Bison. Science, 306, 1561–5. PubMed

Barnes I., Matheus P., Shapiro B., Jensen D., Cooper A. 2002, Dynamics of Pleistocene population extinctions in Beringian brown bears. Science, 295, 2267–70. PubMed

Hofreiter M., Jaenicke V., Serre D., von Haeseler A., Paabo S. 2001, DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res., 29, 4793–9. PubMed PMC

Gilbert M. T., Hansen A. J., Willerslev E., et al. 2003, Characterization of genetic miscoding lesions caused by postmortem damage. Am. J. Hum. Genet., 72, 48–61. PubMed PMC

Gilbert M. T., Willerslev E., Hansen A. J., et al. 2003, Distribution patterns of postmortem damage in human mitochondrial DNA. Am. J. Hum. Genet., 72, 32–47. PubMed PMC

Hansen A., Willerslev E., Wiuf C., Mourier T., Arctander P. 2001, Statistical evidence for miscoding lesions in ancient DNA templates. Mol. Biol. Evol., 18, 262–5. PubMed

Briggs A. W., Stenzel U., Johnson P. L. F., et al. 2007, Patterns of damage in genomic DNA sequences from a Neandertal. Proc. Natl. Acad. Sci. U. S. A., 104, 14616–21. PubMed PMC

Lindahl T., Ljungquist S., Siegert W., Nyberg B., Sperens B. 1977, DNA N-glycosidases: properties of uracil-DNA glycosidase from Escherichia coli. J. Biol. Chem., 252, 3286–94. PubMed

Briggs A. W., Stenzel U., Meyer M., Krause J., Kircher M., Paabo S. 2010, Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res., 38, e87. PubMed PMC

Willerslev E., Davison J., Moora M., et al. 2014, Fifty thousand years of Arctic vegetation and megafaunal diet. Nature, 506, 47–51. PubMed

Tin M. M., Rheindt F. E., Cros E., Mikheyev A. S. 2015, Degenerate adaptor sequences for detecting PCR duplicates in reduced representation sequencing data improve genotype calling accuracy. Mol. Ecol. Resour., 15, 329–36. PubMed

Burbano H. a., Green R. E., Maricic T., et al. 2012, Analysis of human accelerated DNA regions using archaic hominin genomes. PloS One, 7, 1–8. PubMed PMC

Kao W. C., Stevens K., Song Y. S. 2009, BayesCall: a model-based base-calling algorithm for high-throughput short-read sequencing. Genome Res., 19, 1884–95. PubMed PMC

Renaud G., Kircher M., Stenzel U., Kelso J. 2013, freeIbis: an efficient basecaller with calibrated quality scores for Illumina sequencers. Bioinformatics, 29, 1208–9. PubMed PMC

Andrews S. 2015, Babraham Bioinformatics. Babraham Institute. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

Lindgreen S. 2012, AdapterRemoval: easy cleaning of next-generation sequencing reads. BMC Res. Notes, 5, 337. PubMed PMC

Martin M. 2015, Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal, 17.

St. John J. 2015, SeqPrep.

Schubert M., Ginolhac A., Lindgreen S., et al. 2012, Improving ancient DNA read mapping against modern reference genomes. BMC Genomics, 13, 178. PubMed PMC

DePristo M. A., Banks E., Poplin R., et al. 2011, A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet., 43, 491–8. PubMed PMC

McKenna A., Hanna M., Banks E., et al. 2010, The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res., 20, 1297–303. PubMed PMC

Li H., Handsaker B., Wysoker A., et al. 2009, The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25, 2078–9. PubMed PMC

Renaud G. 2015, aLib: a sequencing pipeline for ancient and modern DNA. https://github.com/grenaud/aLib.

Schubert M., Ermini L., Der Sarkissian C., et al. 2014, Characterization of ancient and modern genomes by SNP detection and phylogenomic and metagenomic analysis using PALEOMIX. Nat. Protoc., 9, 1056–82. PubMed

Renaud G., Stenzel U., Kelso J. 2014, leeHom: adaptor trimming and merging for Illumina sequencing reads. Nucleic Acids Res., 42, e141. PubMed PMC

Kerpedjiev P., Frellsen J., Lindgreen S., Krogh A. 2014, Adaptable probabilistic mapping of short reads using position specific scoring matrices. BMC Bioinformatics, 15, 100. PubMed PMC

Ginolhac A., Rasmussen M., Gilbert M. T., Willerslev E., Orlando L. 2011, mapDamage: testing for damage patterns in ancient DNA sequences. Bioinformatics, 27, 2153–5. PubMed

Jonsson H., Ginolhac A., Schubert M., Johnson P. L., Orlando L. 2013, mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics, 29, 1682–4. PubMed PMC

Skoglund P., Northoff B.H., Shunkov M.V., Derevianko A., Pääbo S., Krause J., Jakobsson M. (2014) Separating ancient DNA from modern contamination in a Siberian Neandertal. Proc. Natl. Acad. Sci. U. S. A., doi:10.1073/pnas.1318934111. PubMed PMC

Renaud G., Slon V., Duggan A. T., Kelso J. 2015, Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol., 16, 224. PubMed PMC

Lindgreen S., Krogh A., Pedersen J. S. 2014, SNPest: a probabilistic graphical model for estimating genotypes. BMC Res. Notes, 7, 698. PubMed PMC

Callaway E. 2016, Error found in study of first ancient African genome. Nature. http://www.nature.com/news/error-found-in-study-of-first-ancient-african-genome-1.19258

Rivollat M., Mendisco F., Pemonge M. H., et al. 2015, When the waves of European neolithization met: first paleogenetic evidence from early farmers in the southern paris basin. PloS One, 10, e0125521. PubMed PMC

Der Sarkissian C., Balanovsky O., Brandt G., et al. 2013, Ancient DNA reveals prehistoric gene-flow from siberia in the complex human population history of North East Europe. PLoS Genet., 9, e1003296. PubMed PMC

Skoglund P., Malmstrom H., Omrak A., et al. 2014, Genomic diversity and admixture differs for Stone-Age Scandinavian foragers and farmers. Science, 344, 747–50. PubMed

Skoglund P., Stora J., Gotherstrom A., Jakobsson M. 2013, Accurate sex identification of ancient human remains using DNA shotgun sequencing. J. Archaeolog. Sci., 40, 4477–82.

Brotherton P., Haak W., Templeton J., et al. 2013, Neolithic mitochondrial haplogroup H genomes and the genetic origins of Europeans. Nat. Commun., 4, 1764. PubMed PMC

Moorjani P., Sankararaman S., Fu Q., Przeworski M., Patterson N., Reich D. 2016, A genetic method for dating ancient genomes provides a direct estimate of human generation interval in the last 45,000 years. Proc. Natl. Acad. Sci. U. S. A., 113, 5652–7. PubMed PMC

Elhaik E. 2012, Empirical distributions of FST from large-scale human polymorphism data. PloS One, 7, e49837. PubMed PMC

Novembre J., Johnson T., Bryc K., et al. 2008, Genes mirror geography within Europe. Nature, 456, 98–101. PubMed PMC

Falush D., Stephens M., Pritchard J. K. 2003, Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164, 1567–87. PubMed PMC

Alexander D. H., Novembre J., Lange K. 2009, Fast model-based estimation of ancestry in unrelated individuals. Genome Res., 19, 1655–64. PubMed PMC

Yang W. Y., Platt A., Chiang C. W., Eskin E., Novembre J., Pasaniuc B. 2014, Spatial localization of recent ancestors for admixed individuals. G3 (Bethesda), 4, 2505–18. PubMed PMC

Yang W. Y., Novembre J., Eskin E., Halperin E. 2012, A model-based approach for analysis of spatial structure in genetic data. Nat. Genet., 44, 725–31. PubMed PMC

Patterson N., Moorjani P., Luo Y., et al. 2012, Ancient admixture in human history. Genetics, 192, 1065–93. PubMed PMC

Elhaik E., Tatarinova T., Chebotarev D., et al. 2014, Geographic population structure analysis of worldwide human populations infers their biogeographical origins. Nat. Commun., 5, 3513. PubMed PMC

Sankararaman S., Sridhar S., Kimmel G., Halperin E. 2008, Estimating local ancestry in admixed populations. Am. J. Hum. Genet., 82, 290–303. PubMed PMC

Price A. L., Tandon A., Patterson N., et al. 2009, Sensitive detection of chromosomal segments of distinct ancestry in admixed populations. PLoS Genet., 5, e1000519. PubMed PMC

Kozlov K., Chebotarov D., Hassan M., et al. 2015, Differential evolution approach to detect recent admixture. BMC Genomics, 16, S9. PubMed PMC

Churchhouse C., Marchini J. 2013, Multiway admixture deconvolution using phased or unphased ancestral panels. Genet. Epidemiol., 37, 1–12. PubMed

Sohn K. A., Ghahramani Z., Xing E. P. 2012, Robust estimation of local genetic ancestry in admixed populations using a nonparametric Bayesian approach. Genetics, 191, 1295–308. PubMed PMC

Tang H., Coram M., Wang P., Zhu X., Risch N. 2006, Reconstructing genetic ancestry blocks in admixed individuals. Am. J. Hum. Genet., 79, 1–12. PubMed PMC

Skotte L., Korneliussen T. S., Albrechtsen A. 2013, Estimating individual admixture proportions from next generation sequencing data. Genetics, 195, 693–702. PubMed PMC

Limburg P. A., Weider L. J. 2002, ‘Ancient’ DNA in the resting egg bank of a microcrustacean can serve as a palaeolimnological database. Proc. Biol. Sci., 269, 281–7. PubMed PMC

Jaenicke-Despres V., Buckler E. S., Smith B. D., et al. 2003, Early allelic selection in maize as revealed by ancient DNA. Science, 302, 1206–8. PubMed

Lalueza-Fox C., Gigli E., de la Rasilla M., Fortea J., Rosas A. 2009, Bitter taste perception in Neanderthals through the analysis of the TAS2R38 gene. Biol. Lett., 5, 809–11. PubMed PMC

Lynch M., Xu S., Maruki T., Jiang X., Pfaffelhuber P., Haubold B. 2014, Genome-wide linkage-disequilibrium profiles from single individuals. Genetics, 198, 269–81. PubMed PMC

Mikheyev A. S., Bresson S., Conant P. 2009, Single-queen introductions characterize regional and local invasions by the facultatively clonal little fire ant Wasmannia auropunctata. Mol. Ecol., 18, 2937–44. PubMed

Gokhman D., Lavi E., Prufer K., et al. 2014, Reconstructing the DNA methylation maps of the Neandertal and the Denisovan. Science, 344, 523–7. PubMed

Llamas B., Holland M. L., Chen K., Cropley J. E., Cooper A., Suter C. M. 2012, High-resolution analysis of cytosine methylation in ancient DNA. PloS One, 7, e30226. PubMed PMC

Smith O., Clapham A. J., Rose P., Liu Y., Wang J., Allaby R. G. 2014, Genomic methylation patterns in archaeological barley show de-methylation as a time-dependent diagenetic process. Sci. Rep., 4, 5559. PubMed PMC

Zakany J., Duboule D. 2007, The role of Hox genes during vertebrate limb development. Curr. Opin. Genet. Dev., 17, 359–66. PubMed

Hansen K. D., Timp W., Bravo H. C., et al. 2011, Increased methylation variation in epigenetic domains across cancer types. Nat. Genet., 43, 768–75. PubMed PMC

Berman B. P., Weisenberger D. J., Aman J. F., et al. 2012, Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat. Genet., 44, 40–6. PubMed PMC

Xie W., Schultz M. D., Lister R., et al. 2013, Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell, 153, 1134–48. PubMed PMC

Nakamura R., Tsukahara T., Qu W., et al. 2014, Large hypomethylated domains serve as strong repressive machinery for key developmental genes in vertebrates. Development, 141, 2568–80. PubMed

Jeong M., Sun D., Luo M., et al. 2014, Large conserved domains of low DNA methylation maintained by Dnmt3a. Nat. Genet., 46, 17–23. PubMed PMC

Abu-Remaileh M., Bender S., Raddatz G., et al. 2015, Chronic inflammation induces a novel epigenetic program that is conserved in intestinal adenomas and in colorectal cancer. Cancer Res., 75, 2120–30. PubMed

Kader F., Ghai M. 2015, DNA methylation and application in forensic sciences. Forensic Sci. Int., 249, 255–65. PubMed

Seguin-Orlando A., Korneliussen T. S., Sikora M., et al. 2014, Paleogenomics. Genomic structure in Europeans dating back at least 36,200 years. Science, 346, 1113–8. PubMed

Hendrich B., Bird A. 1998, Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol. Cell. Biol., 18, 6538–47. PubMed PMC

Brogaard K., Xi L., Wang J. P., Widom J. 2012, A map of nucleosome positions in yeast at base-pair resolution. Nature, 486, 496–501. PubMed PMC

Crawford G. E., Holt I. E., Whittle J., et al. 2006, Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). Genome Res., 16, 123–31. PubMed PMC

Tatarinova T., Kryshchenko A., Triska M., et al. 2013, NPEST: a nonparametric method and a database for transcription start site prediction. Quant Biol., 1, 261–71. PubMed PMC

Troukhan M., Tatarinova T., Bouck J., Flavell R. B., Alexandrov N. N. 2009, Genome-wide discovery of cis-elements in promoter sequences using gene expression. OMICS, 13, 139–51. PubMed

Menotti F., O’Sullivan A. 2013, The Oxford handbook of wetland archaeology. Oxford University Press: Oxford.

Kharlamova A., Saveliev S., Kurtova A., et al. 2016, Preserved brain of the Woolly mammoth (Mammuthus primigenius (Blumenbach 1799)) from the Yakutian permafrost. Quat. Int., 406, 86–93.

Zeng J., Konopka G., Hunt B. G., Preuss T. M., Geschwind D., Yi S. V. 2012, Divergent whole-genome methylation maps of human and chimpanzee brains reveal epigenetic basis of human regulatory evolution. Am. J. Hum. Genet., 91, 455–65. PubMed PMC

Chopra P., Papale L. A., White A. T., et al. 2014, Array-based assay detects genome-wide 5-mC and 5-hmC in the brains of humans, non-human primates, and mice. BMC Genomics, 15, 131. PubMed PMC

Sudmant P. H., Mallick S., Nelson B. J., et al. 2015, Global diversity, population stratification, and selection of human copy-number variation. Science, 349, aab3761. PubMed PMC

Karmin M., Saag L., Vicente M., et al. 2015, A recent bottleneck of Y chromosome diversity coincides with a global change in culture. Genome Res., 25, 459–66. PubMed PMC

Leslie S., Winney B., Hellenthal G., et al. 2015, The fine-scale genetic structure of the British population. Nature, 519, 309–14. PubMed PMC

ArunKumar G., Tatarinova T. V., Duty J., et al. 2015, Genome-wide signatures of male-mediated migration shaping the Indian gene pool. J. Hum. Genet., 60, 493–9. PubMed

Kushniarevich A., Utevska O., Chuhryaeva M., et al. 2015, Genetic heritage of the Balto-Slavic speaking populations: a synthesis of autosomal, mitochondrial and Y-chromosomal data. PloS One, 10, e0135820. PubMed PMC

Yunusbayev B., Metspalu M., Metspalu E., et al. 2015, The genetic legacy of the expansion of Turkic-speaking nomads across Eurasia. PLoS Genet., 11, e1005068. PubMed PMC

Flegontov P., Changmai P., Zidkova A., et al. 2016, Genomic study of the Ket: a Paleo-Eskimo-related ethnic group with significant ancient North Eurasian ancestry. Sci. Rep., 6. PubMed PMC

Elhaik E., Greenspan E., Staats S., et al. 2013, The GenoChip: a new tool for genetic anthropology. Genome Biol. Evol., 5, 1021–31. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...