Toward high-resolution population genomics using archaeological samples
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
MC_PC_14115
Medical Research Council - United Kingdom
PubMed
27436340
PubMed Central
PMC4991838
DOI
10.1093/dnares/dsw029
PII: dsw029
Knihovny.cz E-zdroje
- Klíčová slova
- ancient DNA, bioinformatics, epigenetics, next-generation sequencing, population genetics,
- MeSH
- genom lidský * MeSH
- genomika metody MeSH
- lidé MeSH
- molekulární evoluce * MeSH
- populační genetika metody MeSH
- sekvenční analýza DNA metody MeSH
- starobylá DNA * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- starobylá DNA * MeSH
The term 'ancient DNA' (aDNA) is coming of age, with over 1,200 hits in the PubMed database, beginning in the early 1980s with the studies of 'molecular paleontology'. Rooted in cloning and limited sequencing of DNA from ancient remains during the pre-PCR era, the field has made incredible progress since the introduction of PCR and next-generation sequencing. Over the last decade, aDNA analysis ushered in a new era in genomics and became the method of choice for reconstructing the history of organisms, their biogeography, and migration routes, with applications in evolutionary biology, population genetics, archaeogenetics, paleo-epidemiology, and many other areas. This change was brought by development of new strategies for coping with the challenges in studying aDNA due to damage and fragmentation, scarce samples, significant historical gaps, and limited applicability of population genetics methods. In this review, we describe the state-of-the-art achievements in aDNA studies, with particular focus on human evolution and demographic history. We present the current experimental and theoretical procedures for handling and analysing highly degraded aDNA. We also review the challenges in the rapidly growing field of ancient epigenomics. Advancement of aDNA tools and methods signifies a new era in population genetics and evolutionary medicine research.
Department of Animal and Plant Sciences University of Sheffield Sheffield South Yorkshire UK
Donskaya Archeologia Rostov Russia
Institute of Evolutionary Medicine University of Zurich Zurich Switzerland
School of Chemical and Biotechnology SASTRA University Tanjore India
Zobrazit více v PubMed
Green R. E., Krause J., Briggs A. W., et al. 2010, A draft sequence of the Neandertal genome. Science, 328, 710–22. PubMed PMC
Rasmussen M., Li Y., Lindgreen S., et al. 2010, Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature, 463, 757–62. PubMed PMC
Reich D., Green R. E., Kircher M., et al. 2010, Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature, 468, 1053–60. PubMed PMC
Meyer M., Kircher M., Gansauge M. T., et al. 2012, A high-coverage genome sequence from an archaic Denisovan individual. Science, 338, 222–6. PubMed PMC
Orlando L., Ginolhac A., Zhang G., et al. 2013, Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature, 499, 74–8. PubMed
Bos K. I., Harkins K. M., Herbig A., et al. 2014, Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature, 514, 494–7. PubMed PMC
Lazaridis I., Patterson N., Mittnik A., et al. 2014, Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature, 513, 409–13. PubMed PMC
Prufer K., Racimo F., Patterson N., et al. 2014, The complete genome sequence of a Neanderthal from the Altai Mountains. Nature, 505, 43–9. PubMed PMC
Raghavan M., DeGiorgio M., Albrechtsen A., et al. 2014, The genetic prehistory of the New World Arctic. Science, 345, 1255832. PubMed
Raghavan M., Skoglund P., Graf K. E., et al. 2014, Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature, 505, 87–91. PubMed PMC
Allentoft M. E., Sikora M., Sjogren K. G., et al. 2015, Population genomics of Bronze Age Eurasia. Nature, 522, 167–72. PubMed
Haak W., Lazaridis I., Patterson N., et al. 2015, Massive migration from the steppe was a source for Indo-European languages in Europe. Nature, 522, 207–11. PubMed PMC
Raghavan M., Steinrucken M., Harris K., et al. 2015, Population genetics. Genomic evidence for the Pleistocene and recent population history of Native Americans. Science, 349, aab3884. PubMed PMC
Skoglund P., Malmstrom H., Raghavan M., et al. 2012, Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe. Science, 336, 466–9. PubMed
Higuchi R., Bowman B., Freiberger M., Ryder O. A., Wilson A. C. 1984, DNA sequences from the quagga, an extinct member of the horse family. Nature, 312, 282–4. PubMed
Pääbo S., Poinar H., Serre D., et al. 2004, Genetic analyses from ancient DNA. Annu. Rev. Genet., 38, 645–79. PubMed
Hagelberg E., Clegg J. B. 1991, Isolation and characterization of DNA from archaeological bone. Proc. Biol. Sci., 244, 45–50. PubMed
Stone A. C., Milner G. R., Paabo S., Stoneking M. 1996, Sex determination of ancient human skeletons using DNA. Am. J. Phys. Anthropol., 99, 231–8. PubMed
Taubenberger J. K., Reid A. H., Krafft A. E., Bijwaard K. E., Fanning T. G. 1997, Initial genetic characterization of the 1918 “Spanish” influenza virus. Science, 275, 1793–6. PubMed
Poinar H. N., Schwarz C., Qi J., et al. 2006, Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science, 311, 392–4. PubMed
Lalueza-Fox C., Rompler H., Caramelli D., et al. 2007, A melanocortin 1 receptor allele suggests varying pigmentation among Neanderthals. Science, 318, 1453–5. PubMed
Krause J., Lalueza-Fox C., Orlando L., et al. 2007, The derived FOXP2 variant of modern humans was shared with Neandertals. Curr. Biol., 17, 1908–12. PubMed
Green R. E., Malaspinas A. S., Krause J., et al. 2008, A complete neandertal mitochondrial genome sequence determined by high-throughput sequencing. Cell, 134, 416–26. PubMed PMC
Gilbert M. T., Kivisild T., Gronnow B., et al. 2008, Paleo-Eskimo mtDNA genome reveals matrilineal discontinuity in Greenland. Science, 320, 1787–9. PubMed
Pedersen J. S., Valen E., Velazquez A. M., et al. 2014, Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome. Genome Res., 24, 454–66. PubMed PMC
Llorente M. G., Jones E. R., Eriksson A., et al. 2015, Ancient Ethiopian genome reveals extensive Eurasian admixture in Eastern Africa. Science, 350, 820–822. PubMed
Meyer M., Arsuaga J. L., de Filippo C., et al. 2016, Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature, 531, 504–7. PubMed
Fu Q., Posth C., Hajdinjak M., et al. 2016, The genetic history of Ice Age Europe. Nature, 534, 200–5. PubMed PMC
Paabo S., Gifford J. A., Wilson A. C. 1988, Mitochondrial DNA sequences from a 7000-year old brain. Nucleic Acids Res., 16, 9775–87. PubMed PMC
Pickrell J. K., Reich D. 2014, Toward a new history and geography of human genes informed by ancient DNA. Trends Genet., 30, 377–89. PubMed PMC
Veeramah K. R., Hammer M. F. 2014, The impact of whole-genome sequencing on the reconstruction of human population history. Nat. Rev. Genet., 15, 149–62. PubMed
Marean C. W., Anderson R. J., Bar-Matthews M., et al. 2015, A new research strategy for integrating studies of paleoclimate, paleoenvironment, and paleoanthropology. Evol. Anthropol., 24, 62–72. PubMed
Jones M. 2002, The molecule hunt: archaeology and the search for ancient DNA. Penguin: London.
Keller A., Graefen A., Ball M., et al. 2012, New insights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing. Nat. Commun., 3, 698. PubMed
Olalde I., Allentoft M. E., Sanchez-Quinto F., et al. 2014, Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European. Nature, 507, 225–8. PubMed PMC
Olalde I., Sanchez-Quinto F., Datta D., et al. 2014, Genomic analysis of the blood attributed to Louis XVI (1754-1793), king of France. Sci. Rep., 4, 4666. PubMed PMC
Cerqueira C. C., Paixao-Cortes V. R., Zambra F. M., Salzano F. M., Hunemeier T., Bortolini M. C. 2012, Predicting Homo pigmentation phenotype through genomic data: from Neanderthal to James Watson. Am. J. Hum. Biol., 24, 705–9. PubMed
Cale C. M. 2015, Forensic DNA evidence is not infallible. Nature, 526, 611. PubMed
Lohse K., Frantz L. A. 2014, Neandertal admixture in Eurasia confirmed by maximum-likelihood analysis of three genomes. Genetics, 196, 1241–51. PubMed PMC
Sankararaman S., Mallick S., Dannemann M., et al. 2014, The genomic landscape of Neanderthal ancestry in present-day humans. Nature, 507, 354–7. PubMed PMC
Vernot B., Akey J. M. 2015, Complex history of admixture between modern humans and Neandertals. Am. J. Hum. Genet., 96, 448–53. PubMed PMC
Vernot B., Akey J. M. 2014, Human evolution: genomic gifts from archaic hominins. Curr. Biol., 24, R845–8. PubMed
Vernot B., Akey J. M. 2014, Resurrecting surviving Neandertal lineages from modern human genomes. Science, 343, 1017–21. PubMed
Fu Q., Hajdinjak M., Moldovan O. T., et al. 2015, An early modern human from Romania with a recent Neanderthal ancestor. Nature, 524, 216–9. PubMed PMC
Sanchez-Quinto F., Lalueza-Fox C. 2015, Almost 20 years of Neanderthal palaeogenetics: adaptation, admixture, diversity, demography and extinction. Philos. Trans. R. Soc. Lond. B Biol. Sci., 370, 20130374. PubMed PMC
Kuhlwilm M., Gronau I., Hubisz M. J., et al. 2016, Ancient gene flow from early modern humans into Eastern Neanderthals. Nature, 530, 429–33. PubMed PMC
Wall J. D., Yang M. A., Jay F., et al. 2013, Higher levels of neanderthal ancestry in East Asians than in Europeans. Genetics, 194, 199–209. PubMed PMC
Krause J., Orlando L., Serre D., et al. 2007, Neanderthals in central Asia and Siberia. Nature, 449, 902–4. PubMed
Racimo F., Sankararaman S., Nielsen R., Huerta-Sanchez E. 2015, Evidence for archaic adaptive introgression in humans. Nat. Rev. Genet., 16, 359–71. PubMed PMC
Krause J., Fu Q., Good J. M., et al. 2010, The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature, 464, 894–7. PubMed PMC
Sawyer S., Renaud G., Viola B., et al. 2015, Nuclear and mitochondrial DNA sequences from two Denisovan individuals. Proc. Natl. Acad. Sci. U. S. A., 112, 15696–700. PubMed PMC
Reich D., Patterson N., Kircher M., et al. 2011, Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. Am. J. Hum. Genet., 89, 516–28. PubMed PMC
Krause J., Briggs A. W., Kircher M., et al. 2010, A complete mtDNA genome of an early modern human from Kostenki, Russia. Curr. Biol., 20, 231–6. PubMed
Qin P., Stoneking M. 2015, Denisovan ancestry in East Eurasian and native American populations. Mol. Biol. Evol., 32, 2665–74. PubMed
Eriksson A., Manica A. 2012, Effect of ancient population structure on the degree of polymorphism shared between modern human populations and ancient hominins. Proc. Natl. Acad. Sci. U. S. A., 109, 13956–60. PubMed PMC
Sankararaman S., Mallick S., Patterson N., Reich D. 2016, The combined landscape of Denisovan and Neanderthal ancestry in present-day humans. Curr. Biol., 26, 1241–7. PubMed PMC
Meyer M., Fu Q., Aximu-Petri A., et al. 2014, A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature, 505, 403–6. PubMed
Arsuaga J. L., Martinez I., Arnold L. J., et al. 2014, Neandertal roots: cranial and chronological evidence from Sima de los Huesos. Science, 344, 1358–63. PubMed
Arsuaga J. L., Carretero J.-M., Lorenzo C., et al. 2015, Postcranial morphology of the middle Pleistocene humans from Sima de los Huesos, Spain. PNAS, 112, 11524–9. PubMed PMC
Mathieson I., Lazaridis I., Rohland N., et al. 2015, Genome-wide patterns of selection in 230 ancient Eurasians. Nature, 528, 499–503. PubMed PMC
Anthony D. W. 2007, The horse, the wheel, and language: how Bronze-Age riders from the Eurasian steppes shaped the modern world. Princeton University Press: Princeton, N.J.; Woodstock.
Matisoo-Smith E. 2015, Ancient DNA and the human settlement of the Pacific: a review. J. Hum. Evol., 79, 93–104. PubMed
Gao S. Z., Zhang Y., Wei D., et al. 2015, Ancient DNA reveals a migration of the ancient Di-qiang populations into Xinjiang as early as the early Bronze Age. Am. J. Phys. Anthropol., 157, 71–80. PubMed
Zhao Y. B., Li H. J., Cai D. W., et al. 2010, Ancient DNA from nomads in 2500-year-old archeological sites of Pengyang, China. J Hum Genet., 55, 215–8. PubMed
Liu W., Martinon-Torres M., Cai Y. J., et al. 2015, The earliest unequivocally modern humans in southern China. Nature, 526, 696–9. PubMed
Lai C. S., Fisher S. E., Hurst J. A., Vargha-Khadem F., Monaco A. P. 2001, A forkhead-domain gene is mutated in a severe speech and language disorder. Nature, 413, 519–23. PubMed
Rasmussen S., Allentoft M. E., Nielsen K., et al. 2015, Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago. Cell, 163, 571–82. PubMed PMC
Brosch R., Gordon S. V., Marmiesse M., et al. 2002, A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc. Natl. Acad. Sci. U. S. A., 99, 3684–9. PubMed PMC
Nerlich A. G., Losch S. 2009, Paleopathology of human tuberculosis and the potential role of climate. Interdiscip. Perspect. Infect. Dis., 2009, 437187. PubMed PMC
Darling M. I., Donoghue H. D. 2014, Insights from paleomicrobiology into the indigenous peoples of pre-colonial America – a review. Mem. Inst. Oswaldo. Cruz., 109, 131–9. PubMed PMC
Adler C. J., Dobney K., Weyrich L. S., et al. 2013, Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nat. Genet., 45, 450–5, 455e451. PubMed PMC
Reid A. H., Fanning T. G., Hultin J. V., Taubenberger J. K. 1999, Origin and evolution of the 1918 “Spanish” influenza virus hemagglutinin gene. Proc. Natl. Acad. Sci. U. S. A., 96, 1651–6. PubMed PMC
Taubenberger J. K., Hultin J. V., Morens D. M. 2007, Discovery and characterization of the 1918 pandemic influenza virus in historical context. Antivir. Ther., 12, 581–91. PubMed PMC
Taubenberger J. K., Morens D. M., Fauci A. S. 2007, The next influenza pandemic: can it be predicted? JAMA, 297, 2025–7. PubMed PMC
Tumpey T. M., Basler C. F., Aguilar P. V., et al. 2005, Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science, 310, 77–80. PubMed
Tumpey T. M., Garcia-Sastre A., Taubenberger J. K., Palese P., Swayne D. E., Basler C. F. 2004, Pathogenicity and immunogenicity of influenza viruses with genes from the 1918 pandemic virus. Proc. Natl. Acad. Sci. U. S. A., 101, 3166–71. PubMed PMC
Millar C. D., Huynen L., Subramanian S., Mohandesan E., Lambert D. M. 2008, New developments in ancient genomics. Trends Ecol. Evol., 23, 386–93. PubMed
Parks M., Subramanian S., Baroni C., et al. 2015, Ancient population genomics and the study of evolution. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 370, 20130381. PubMed PMC
Haile J., Froese D. G., Macphee R. D., et al. 2009, Ancient DNA reveals late survival of mammoth and horse in interior Alaska. Proc. Natl. Acad. Sci. U. S. A., 106, 22352–7. PubMed PMC
Handt O., Hoss M., Krings M., Paabo S. 1994, Ancient DNA: methodological challenges. Experientia, 50, 524–9. PubMed
Handt O., Richards M., Trommsdorff M., et al. 1994, Molecular genetic analyses of the Tyrolean Ice Man. Science, 264, 1775–8. PubMed
Lia V. V., Confalonieri V. a., Ratto N., et al. 2007, Microsatellite typing of ancient maize: insights into the history of agriculture in southern South America. Proc. Biol. Sci. R. Soc., 274, 545–54. PubMed PMC
Haak W., Balanovsky O., Sanchez J. J., et al. 2010, Ancient DNA from European early neolithic farmers reveals their near eastern affinities. PLoS Biol., 8, e1000536. PubMed PMC
Malaspinas A. S., Lao O., Schroeder H., et al. 2014, Two ancient human genomes reveal Polynesian ancestry among the indigenous Botocudos of Brazil. Curr. Biol., 24, R1035–7. PubMed PMC
Green R. E., Briggs A. W., Krause J., et al. 2009, The Neandertal genome and ancient DNA authenticity. EMBO J., 28, 2494–502. PubMed PMC
Green R. E., Krause J., Ptak S. E., et al. 2006, Analysis of one million base pairs of Neanderthal DNA. Nature, 444, 330–6. PubMed
Dabney J., Knapp M., Glocke I., et al. 2013, Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci. U. S. A., 110, 15758–63. PubMed PMC
Gilbert M. T. P., Tomsho L. P., Rendulic S., et al. 2007, Whole-genome shotgun sequencing of mitochondria from ancient hair shafts. Science, 317, 1927–30. PubMed
Miller W., Drautz D. I., Ratan A., et al. 2008, Sequencing the nuclear genome of the extinct woolly mammoth. Nature, 456, 387–90. PubMed
Golenberg E. M. 1991, Amplification and analysis of miocene plant fossil DNA. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 333, 419–26; discussion 426–17. PubMed
Golenberg E. M., Giannasi D. E., Clegg M. T., et al. 1990, Chloroplast DNA sequence from a miocene Magnolia species. Nature, 344, 656–8. PubMed
Cano R. J., Poinar H. N. 1993, Rapid isolation of DNA from fossil and museum specimens suitable for PCR. BioTechniques, 15, 432–4, 436. PubMed
Cano R. J., Poinar H. N., Pieniazek N. J., Acra A., Poinar G. O., Jr. 1993, Amplification and sequencing of DNA from a 120-135-million-year-old weevil. Nature, 363, 536–8. PubMed
Vreeland R. H., Rosenzweig W. D., Powers D. W. 2000, Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature, 407, 897–900. PubMed
Woodward S. R., Weyand N. J., Bunnell M. 1994, DNA sequence from Cretaceous period bone fragments. Science, 266, 1229–32. PubMed
Li Y., An C.-C., Zhu Y.-X. 1995, DNA isolation and sequence analysis of dinosaur DNA from Cretaceous dinosaur egg in Xixia Henan, China. Acta Sci. Nat. Univ. Pekinensi 31, 148–52.
Cooper A., Poinar H. N. 2000, Ancient DNA: do it right or not at all. Science, 289, 1139. PubMed
Austin J. J., Ross A. J., Smith A. B., Fortey R. A., Thomas R. H. 1997, Problems of reproducibility – does geologically ancient DNA survive in amber-preserved insects? Proc. Biol. Sci., 264, 467–74. PubMed PMC
Allard M. W., Young D., Huyen Y. 1995, Detecting dinosaur DNA. Science, 268, 1192; author reply 1194. PubMed
Hedges S. B., Schweitzer M. H. 1995, Detecting dinosaur DNA. Science, 268, 1191–2; author reply 1194. PubMed
Henikoff S. 1995, Detecting dinosaur DNA. Science, 268, 1192; author reply 1194. PubMed
Zischler H., Hoss M., Handt O., von Haeseler A., van der Kuyl A. C., Goudsmit J. 1995, Detecting dinosaur DNA. Science, 268, 1192–3; author reply 1194. PubMed
Austin J. J., Smith A. B., Thomas R. H. 1997, Palaeontology in a molecular world: the search for authentic ancient DNA. Trends Ecol. Evol., 12, 303–6. PubMed
Graur D., Pupko T. 2001, The Permian bacterium that isn’t. Mol. Biol. Evol., 18, 1143–6. PubMed
Gutierrez G., Marin A. 1998, The most ancient DNA recovered from an amber-preserved specimen may not be as ancient as it seems. Mol. Biol. Evol., 15, 926–9. PubMed
Nicholls H. 2005, Ancient DNA comes of age. PLoS Biol., 3, e56. PubMed PMC
Knapp M., Lalueza-Fox C., Hofreiter M. 2015, Re-inventing ancient human DNA. Investig. Genet., 6, 4. PubMed PMC
Damgaard P. B., Margaryan A., Schroeder H., Orlando L., Willerslev E., Allentoft M. E. 2015, Improving access to endogenous DNA in ancient bones and teeth. Sci. Rep., 5, 11184. PubMed PMC
Mikheyev A. S., Tin M. M., Arora J., Seeley T. D. 2015, Museum samples reveal rapid evolution by wild honey bees exposed to a novel parasite. Nat. Commun., 6, 7991. PubMed PMC
Gansauge M. T., Meyer M. 2014, Selective enrichment of damaged DNA molecules for ancient genome sequencing. Genome Res., 24, 1543–9. PubMed PMC
Burbano H. a., Hodges E., Green R. E., et al. 2010, Targeted investigation of the Neanderthal genome by array-based sequence capture. Science, 328, 723–5. PubMed PMC
Prüfer K., Stenzel U., Hofreiter M., Pääbo S., Kelso J., Green R. E. 2010, Computational challenges in the analysis of ancient DNA. Genome Biol., 11, R47–7. PubMed PMC
Oskam C. L., Haile J., McLay E., et al. 2010, Fossil avian eggshell preserves ancient DNA. Proc. R. Soc. B. Biol. Sci., 277, 1991–2000. PubMed PMC
Poinar H., Kuch M., McDonald G., Martin P., Pääbo S. 2003, Nuclear gene sequences from a late Pleistocene sloth coprolite. Curr. Biol., 13, 1150–2. PubMed
Adcock G. J., Dennis E. S., Easteal S., et al. 2001, Mitochondrial DNA sequences in ancient Australians: implications for modern human origins. Proc. Natl. Acad. Sci. U. S. A., 98, 537–42. PubMed PMC
Noonan J. P., Coop G., Kudaravalli S., et al. 2006, Sequencing and analysis of Neanderthal genomic DNA. Science, 314, 1113–8. PubMed PMC
Briggs A. W., Good J. M., Green R. E., et al. 2009, Targeted retrieval and analysis of five Neandertal mtDNA genomes. Science, 325, 318–21. PubMed
Lalueza-Fox C., Gigli E., de la Rasilla M., et al. 2008, Genetic characterization of the ABO blood group in Neandertals. BMC Evol. Biol., 8, 342–2. PubMed PMC
Rasmussen M., Guo X., Wang Y., et al. 2011, An Aboriginal Australian genome reveals separate human dispersals into Asia. Science, 334, 94–8. PubMed PMC
Kolman C. J., Tuross N. 2000, Ancient DNA analysis of human populations. Am. J. Phys. Anthropol., 111, 5–23. PubMed
Lacan M., Keyser C., Ricaut F.-X., et al. 2011, Ancient DNA reveals male diffusion through the Neolithic Mediterranean route. Proc. Natl. Acad. Sci. U. S. A., 108, 9788–91. PubMed PMC
Shapiro B., Drummond A. J., Rambaut A., et al. 2004, Rise and fall of the Beringian Steppe Bison. Science, 306, 1561–5. PubMed
Barnes I., Matheus P., Shapiro B., Jensen D., Cooper A. 2002, Dynamics of Pleistocene population extinctions in Beringian brown bears. Science, 295, 2267–70. PubMed
Hofreiter M., Jaenicke V., Serre D., von Haeseler A., Paabo S. 2001, DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res., 29, 4793–9. PubMed PMC
Gilbert M. T., Hansen A. J., Willerslev E., et al. 2003, Characterization of genetic miscoding lesions caused by postmortem damage. Am. J. Hum. Genet., 72, 48–61. PubMed PMC
Gilbert M. T., Willerslev E., Hansen A. J., et al. 2003, Distribution patterns of postmortem damage in human mitochondrial DNA. Am. J. Hum. Genet., 72, 32–47. PubMed PMC
Hansen A., Willerslev E., Wiuf C., Mourier T., Arctander P. 2001, Statistical evidence for miscoding lesions in ancient DNA templates. Mol. Biol. Evol., 18, 262–5. PubMed
Briggs A. W., Stenzel U., Johnson P. L. F., et al. 2007, Patterns of damage in genomic DNA sequences from a Neandertal. Proc. Natl. Acad. Sci. U. S. A., 104, 14616–21. PubMed PMC
Lindahl T., Ljungquist S., Siegert W., Nyberg B., Sperens B. 1977, DNA N-glycosidases: properties of uracil-DNA glycosidase from Escherichia coli. J. Biol. Chem., 252, 3286–94. PubMed
Briggs A. W., Stenzel U., Meyer M., Krause J., Kircher M., Paabo S. 2010, Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res., 38, e87. PubMed PMC
Willerslev E., Davison J., Moora M., et al. 2014, Fifty thousand years of Arctic vegetation and megafaunal diet. Nature, 506, 47–51. PubMed
Tin M. M., Rheindt F. E., Cros E., Mikheyev A. S. 2015, Degenerate adaptor sequences for detecting PCR duplicates in reduced representation sequencing data improve genotype calling accuracy. Mol. Ecol. Resour., 15, 329–36. PubMed
Burbano H. a., Green R. E., Maricic T., et al. 2012, Analysis of human accelerated DNA regions using archaic hominin genomes. PloS One, 7, 1–8. PubMed PMC
Kao W. C., Stevens K., Song Y. S. 2009, BayesCall: a model-based base-calling algorithm for high-throughput short-read sequencing. Genome Res., 19, 1884–95. PubMed PMC
Renaud G., Kircher M., Stenzel U., Kelso J. 2013, freeIbis: an efficient basecaller with calibrated quality scores for Illumina sequencers. Bioinformatics, 29, 1208–9. PubMed PMC
Andrews S. 2015, Babraham Bioinformatics. Babraham Institute. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Lindgreen S. 2012, AdapterRemoval: easy cleaning of next-generation sequencing reads. BMC Res. Notes, 5, 337. PubMed PMC
Martin M. 2015, Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal, 17.
St. John J. 2015, SeqPrep.
Schubert M., Ginolhac A., Lindgreen S., et al. 2012, Improving ancient DNA read mapping against modern reference genomes. BMC Genomics, 13, 178. PubMed PMC
DePristo M. A., Banks E., Poplin R., et al. 2011, A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet., 43, 491–8. PubMed PMC
McKenna A., Hanna M., Banks E., et al. 2010, The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res., 20, 1297–303. PubMed PMC
Li H., Handsaker B., Wysoker A., et al. 2009, The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25, 2078–9. PubMed PMC
Renaud G. 2015, aLib: a sequencing pipeline for ancient and modern DNA. https://github.com/grenaud/aLib.
Schubert M., Ermini L., Der Sarkissian C., et al. 2014, Characterization of ancient and modern genomes by SNP detection and phylogenomic and metagenomic analysis using PALEOMIX. Nat. Protoc., 9, 1056–82. PubMed
Renaud G., Stenzel U., Kelso J. 2014, leeHom: adaptor trimming and merging for Illumina sequencing reads. Nucleic Acids Res., 42, e141. PubMed PMC
Kerpedjiev P., Frellsen J., Lindgreen S., Krogh A. 2014, Adaptable probabilistic mapping of short reads using position specific scoring matrices. BMC Bioinformatics, 15, 100. PubMed PMC
Ginolhac A., Rasmussen M., Gilbert M. T., Willerslev E., Orlando L. 2011, mapDamage: testing for damage patterns in ancient DNA sequences. Bioinformatics, 27, 2153–5. PubMed
Jonsson H., Ginolhac A., Schubert M., Johnson P. L., Orlando L. 2013, mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics, 29, 1682–4. PubMed PMC
Skoglund P., Northoff B.H., Shunkov M.V., Derevianko A., Pääbo S., Krause J., Jakobsson M. (2014) Separating ancient DNA from modern contamination in a Siberian Neandertal. Proc. Natl. Acad. Sci. U. S. A., doi:10.1073/pnas.1318934111. PubMed PMC
Renaud G., Slon V., Duggan A. T., Kelso J. 2015, Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol., 16, 224. PubMed PMC
Lindgreen S., Krogh A., Pedersen J. S. 2014, SNPest: a probabilistic graphical model for estimating genotypes. BMC Res. Notes, 7, 698. PubMed PMC
Callaway E. 2016, Error found in study of first ancient African genome. Nature. http://www.nature.com/news/error-found-in-study-of-first-ancient-african-genome-1.19258
Rivollat M., Mendisco F., Pemonge M. H., et al. 2015, When the waves of European neolithization met: first paleogenetic evidence from early farmers in the southern paris basin. PloS One, 10, e0125521. PubMed PMC
Der Sarkissian C., Balanovsky O., Brandt G., et al. 2013, Ancient DNA reveals prehistoric gene-flow from siberia in the complex human population history of North East Europe. PLoS Genet., 9, e1003296. PubMed PMC
Skoglund P., Malmstrom H., Omrak A., et al. 2014, Genomic diversity and admixture differs for Stone-Age Scandinavian foragers and farmers. Science, 344, 747–50. PubMed
Skoglund P., Stora J., Gotherstrom A., Jakobsson M. 2013, Accurate sex identification of ancient human remains using DNA shotgun sequencing. J. Archaeolog. Sci., 40, 4477–82.
Brotherton P., Haak W., Templeton J., et al. 2013, Neolithic mitochondrial haplogroup H genomes and the genetic origins of Europeans. Nat. Commun., 4, 1764. PubMed PMC
Moorjani P., Sankararaman S., Fu Q., Przeworski M., Patterson N., Reich D. 2016, A genetic method for dating ancient genomes provides a direct estimate of human generation interval in the last 45,000 years. Proc. Natl. Acad. Sci. U. S. A., 113, 5652–7. PubMed PMC
Elhaik E. 2012, Empirical distributions of FST from large-scale human polymorphism data. PloS One, 7, e49837. PubMed PMC
Novembre J., Johnson T., Bryc K., et al. 2008, Genes mirror geography within Europe. Nature, 456, 98–101. PubMed PMC
Falush D., Stephens M., Pritchard J. K. 2003, Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164, 1567–87. PubMed PMC
Alexander D. H., Novembre J., Lange K. 2009, Fast model-based estimation of ancestry in unrelated individuals. Genome Res., 19, 1655–64. PubMed PMC
Yang W. Y., Platt A., Chiang C. W., Eskin E., Novembre J., Pasaniuc B. 2014, Spatial localization of recent ancestors for admixed individuals. G3 (Bethesda), 4, 2505–18. PubMed PMC
Yang W. Y., Novembre J., Eskin E., Halperin E. 2012, A model-based approach for analysis of spatial structure in genetic data. Nat. Genet., 44, 725–31. PubMed PMC
Patterson N., Moorjani P., Luo Y., et al. 2012, Ancient admixture in human history. Genetics, 192, 1065–93. PubMed PMC
Elhaik E., Tatarinova T., Chebotarev D., et al. 2014, Geographic population structure analysis of worldwide human populations infers their biogeographical origins. Nat. Commun., 5, 3513. PubMed PMC
Sankararaman S., Sridhar S., Kimmel G., Halperin E. 2008, Estimating local ancestry in admixed populations. Am. J. Hum. Genet., 82, 290–303. PubMed PMC
Price A. L., Tandon A., Patterson N., et al. 2009, Sensitive detection of chromosomal segments of distinct ancestry in admixed populations. PLoS Genet., 5, e1000519. PubMed PMC
Kozlov K., Chebotarov D., Hassan M., et al. 2015, Differential evolution approach to detect recent admixture. BMC Genomics, 16, S9. PubMed PMC
Churchhouse C., Marchini J. 2013, Multiway admixture deconvolution using phased or unphased ancestral panels. Genet. Epidemiol., 37, 1–12. PubMed
Sohn K. A., Ghahramani Z., Xing E. P. 2012, Robust estimation of local genetic ancestry in admixed populations using a nonparametric Bayesian approach. Genetics, 191, 1295–308. PubMed PMC
Tang H., Coram M., Wang P., Zhu X., Risch N. 2006, Reconstructing genetic ancestry blocks in admixed individuals. Am. J. Hum. Genet., 79, 1–12. PubMed PMC
Skotte L., Korneliussen T. S., Albrechtsen A. 2013, Estimating individual admixture proportions from next generation sequencing data. Genetics, 195, 693–702. PubMed PMC
Limburg P. A., Weider L. J. 2002, ‘Ancient’ DNA in the resting egg bank of a microcrustacean can serve as a palaeolimnological database. Proc. Biol. Sci., 269, 281–7. PubMed PMC
Jaenicke-Despres V., Buckler E. S., Smith B. D., et al. 2003, Early allelic selection in maize as revealed by ancient DNA. Science, 302, 1206–8. PubMed
Lalueza-Fox C., Gigli E., de la Rasilla M., Fortea J., Rosas A. 2009, Bitter taste perception in Neanderthals through the analysis of the TAS2R38 gene. Biol. Lett., 5, 809–11. PubMed PMC
Lynch M., Xu S., Maruki T., Jiang X., Pfaffelhuber P., Haubold B. 2014, Genome-wide linkage-disequilibrium profiles from single individuals. Genetics, 198, 269–81. PubMed PMC
Mikheyev A. S., Bresson S., Conant P. 2009, Single-queen introductions characterize regional and local invasions by the facultatively clonal little fire ant Wasmannia auropunctata. Mol. Ecol., 18, 2937–44. PubMed
Gokhman D., Lavi E., Prufer K., et al. 2014, Reconstructing the DNA methylation maps of the Neandertal and the Denisovan. Science, 344, 523–7. PubMed
Llamas B., Holland M. L., Chen K., Cropley J. E., Cooper A., Suter C. M. 2012, High-resolution analysis of cytosine methylation in ancient DNA. PloS One, 7, e30226. PubMed PMC
Smith O., Clapham A. J., Rose P., Liu Y., Wang J., Allaby R. G. 2014, Genomic methylation patterns in archaeological barley show de-methylation as a time-dependent diagenetic process. Sci. Rep., 4, 5559. PubMed PMC
Zakany J., Duboule D. 2007, The role of Hox genes during vertebrate limb development. Curr. Opin. Genet. Dev., 17, 359–66. PubMed
Hansen K. D., Timp W., Bravo H. C., et al. 2011, Increased methylation variation in epigenetic domains across cancer types. Nat. Genet., 43, 768–75. PubMed PMC
Berman B. P., Weisenberger D. J., Aman J. F., et al. 2012, Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat. Genet., 44, 40–6. PubMed PMC
Xie W., Schultz M. D., Lister R., et al. 2013, Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell, 153, 1134–48. PubMed PMC
Nakamura R., Tsukahara T., Qu W., et al. 2014, Large hypomethylated domains serve as strong repressive machinery for key developmental genes in vertebrates. Development, 141, 2568–80. PubMed
Jeong M., Sun D., Luo M., et al. 2014, Large conserved domains of low DNA methylation maintained by Dnmt3a. Nat. Genet., 46, 17–23. PubMed PMC
Abu-Remaileh M., Bender S., Raddatz G., et al. 2015, Chronic inflammation induces a novel epigenetic program that is conserved in intestinal adenomas and in colorectal cancer. Cancer Res., 75, 2120–30. PubMed
Kader F., Ghai M. 2015, DNA methylation and application in forensic sciences. Forensic Sci. Int., 249, 255–65. PubMed
Seguin-Orlando A., Korneliussen T. S., Sikora M., et al. 2014, Paleogenomics. Genomic structure in Europeans dating back at least 36,200 years. Science, 346, 1113–8. PubMed
Hendrich B., Bird A. 1998, Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol. Cell. Biol., 18, 6538–47. PubMed PMC
Brogaard K., Xi L., Wang J. P., Widom J. 2012, A map of nucleosome positions in yeast at base-pair resolution. Nature, 486, 496–501. PubMed PMC
Crawford G. E., Holt I. E., Whittle J., et al. 2006, Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). Genome Res., 16, 123–31. PubMed PMC
Tatarinova T., Kryshchenko A., Triska M., et al. 2013, NPEST: a nonparametric method and a database for transcription start site prediction. Quant Biol., 1, 261–71. PubMed PMC
Troukhan M., Tatarinova T., Bouck J., Flavell R. B., Alexandrov N. N. 2009, Genome-wide discovery of cis-elements in promoter sequences using gene expression. OMICS, 13, 139–51. PubMed
Menotti F., O’Sullivan A. 2013, The Oxford handbook of wetland archaeology. Oxford University Press: Oxford.
Kharlamova A., Saveliev S., Kurtova A., et al. 2016, Preserved brain of the Woolly mammoth (Mammuthus primigenius (Blumenbach 1799)) from the Yakutian permafrost. Quat. Int., 406, 86–93.
Zeng J., Konopka G., Hunt B. G., Preuss T. M., Geschwind D., Yi S. V. 2012, Divergent whole-genome methylation maps of human and chimpanzee brains reveal epigenetic basis of human regulatory evolution. Am. J. Hum. Genet., 91, 455–65. PubMed PMC
Chopra P., Papale L. A., White A. T., et al. 2014, Array-based assay detects genome-wide 5-mC and 5-hmC in the brains of humans, non-human primates, and mice. BMC Genomics, 15, 131. PubMed PMC
Sudmant P. H., Mallick S., Nelson B. J., et al. 2015, Global diversity, population stratification, and selection of human copy-number variation. Science, 349, aab3761. PubMed PMC
Karmin M., Saag L., Vicente M., et al. 2015, A recent bottleneck of Y chromosome diversity coincides with a global change in culture. Genome Res., 25, 459–66. PubMed PMC
Leslie S., Winney B., Hellenthal G., et al. 2015, The fine-scale genetic structure of the British population. Nature, 519, 309–14. PubMed PMC
ArunKumar G., Tatarinova T. V., Duty J., et al. 2015, Genome-wide signatures of male-mediated migration shaping the Indian gene pool. J. Hum. Genet., 60, 493–9. PubMed
Kushniarevich A., Utevska O., Chuhryaeva M., et al. 2015, Genetic heritage of the Balto-Slavic speaking populations: a synthesis of autosomal, mitochondrial and Y-chromosomal data. PloS One, 10, e0135820. PubMed PMC
Yunusbayev B., Metspalu M., Metspalu E., et al. 2015, The genetic legacy of the expansion of Turkic-speaking nomads across Eurasia. PLoS Genet., 11, e1005068. PubMed PMC
Flegontov P., Changmai P., Zidkova A., et al. 2016, Genomic study of the Ket: a Paleo-Eskimo-related ethnic group with significant ancient North Eurasian ancestry. Sci. Rep., 6. PubMed PMC
Elhaik E., Greenspan E., Staats S., et al. 2013, The GenoChip: a new tool for genetic anthropology. Genome Biol. Evol., 5, 1021–31. PubMed PMC