Smac mimetic LCL161 overcomes protective ER stress induced by obatoclax, synergistically causing cell death in multiple myeloma
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
K12 CA090628
NCI NIH HHS - United States
P50 CA186781
NCI NIH HHS - United States
PubMed
27494845
PubMed Central
PMC5302912
DOI
10.18632/oncotarget.11028
PII: 11028
Knihovny.cz E-zdroje
- Klíčová slova
- Bcl-2, GRP78, IAP, apoptosis, myeloma,
- MeSH
- apoptóza účinky léků MeSH
- chaperon endoplazmatického retikula BiP MeSH
- chemorezistence MeSH
- down regulace MeSH
- fosfatidylinositol-3-kinasy metabolismus MeSH
- fosforylace MeSH
- indoly MeSH
- intracelulární signální peptidy a proteiny agonisté MeSH
- kaspasy metabolismus MeSH
- lidé MeSH
- lokální recidiva nádoru farmakoterapie patologie MeSH
- mitochondriální proteiny agonisté MeSH
- mnohočetný myelom farmakoterapie patologie MeSH
- nádorové buněčné linie MeSH
- proteiny regulující apoptózu MeSH
- proteiny teplotního šoku metabolismus MeSH
- protinádorové látky farmakologie terapeutické užití MeSH
- protokoly protinádorové kombinované chemoterapie farmakologie terapeutické užití MeSH
- protoonkogenní proteiny c-akt metabolismus MeSH
- protoonkogenní proteiny c-bcl-2 antagonisté a inhibitory metabolismus MeSH
- pyrroly farmakologie terapeutické užití MeSH
- signální dráha UPR účinky léků MeSH
- stres endoplazmatického retikula účinky léků MeSH
- synergismus léků MeSH
- thiazoly farmakologie terapeutické užití MeSH
- upregulace MeSH
- XBP1 metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- BCL2 protein, human MeSH Prohlížeč
- chaperon endoplazmatického retikula BiP MeSH
- DIABLO protein, human MeSH Prohlížeč
- HSPA5 protein, human MeSH Prohlížeč
- indoly MeSH
- intracelulární signální peptidy a proteiny MeSH
- kaspasy MeSH
- LCL161 MeSH Prohlížeč
- mitochondriální proteiny MeSH
- obatoclax MeSH Prohlížeč
- proteiny regulující apoptózu MeSH
- proteiny teplotního šoku MeSH
- protinádorové látky MeSH
- protoonkogenní proteiny c-akt MeSH
- protoonkogenní proteiny c-bcl-2 MeSH
- pyrroly MeSH
- thiazoly MeSH
- XBP1 protein, human MeSH Prohlížeč
- XBP1 MeSH
Bcl2 and IAP families are anti-apoptotic proteins deregulated in multiple myeloma (MM) cells. Pharmacological inhibition of each of these families has shown significant activity only in subgroups of MM patients. Here, we have examined a broad-spectrum Bcl2 family inhibitor Obatoclax (OBX) in combination with a Smac mimetic LCL161 in MM cell lines and patient cells. LCL161/OBX combination induced synergistic cytotoxicity and anti-proliferative effects on a broad range of human MM cell lines. The cytotoxicity was mediated through inhibition of the IAPs, activation of caspases and up regulation of the pro-apoptotic proteins Bid, Bim, Puma and Noxa by the drug combination. In addition, we observed that OBX caused ER stress and activated the Unfolded Protein Response (UPR) leading to drug resistance. LCL161, however inhibited spliced Xbp-1, a pro-survival factor. In addition, we observed that OBX increased GRP78 localization to the cell surface, which then induced PI3K dependent Akt activation and resistance to cell death. LCL161 was able to block OBX induced Akt activation contributing to synergistic cell death. Our results support clinical evaluation of this combination strategy in relapsed refractory MM patients.
Zobrazit více v PubMed
Kumar SK, Dispenzieri A, Lacy MQ, Gertz MA, Buadi FK, Pandey S, Kapoor P, Dingli D, Hayman SR, Leung N, Lust J, McCurdy A, Russell SJ, Zeldenrust SR, Kyle RA, Rajkumar SV. Continued improvement in survival in multiple myeloma: changes in early mortality and outcomes in older patients. Leukemia. 2013 PubMed PMC
Reed JC. Bcl-2-family proteins and hematologic malignancies: history and future prospects. Blood. 2008;111:3322–3330. PubMed PMC
Kaufmann SH, Vaux DL. Alterations in the apoptotic machinery and their potential role in anticancer drug resistance. Oncogene. 2003;22:7414–7430. PubMed
Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR. The BCL-2 family reunion. Molecular cell. 2010;37:299–310. PubMed PMC
Zhang B, Gojo I, Fenton RG. Myeloid cell factor-1 is a critical survival factor for multiple myeloma. Blood. 2002;99:1885–1893. PubMed
Wuilleme-Toumi S, Robillard N, Gomez P, Moreau P, Le Gouill S, Avet-Loiseau H, Harousseau JL, Amiot M, Bataille R. Mcl-1 is overexpressed in multiple myeloma and associated with relapse and shorter survival. Leukemia. 2005;19:1248–1252. PubMed
Feinman R, Koury J, Thames M, Barlogie B, Epstein J, Siegel DS. Role of NF-kappaB in the rescue of multiple myeloma cells from glucocorticoid-induced apoptosis by bcl-2. Blood. 1999;93:3044–3052. PubMed
Tu Y, Xu FH, Liu J, Vescio R, Berenson J, Fady C, Lichtenstein A. Upregulated expression of BCL-2 in multiple myeloma cells induced by exposure to doxorubicin etoposide and hydrogen peroxide. Blood. 1996;88:1805–1812. PubMed
Trudel S, Li ZH, Rauw J, Tiedemann RE, Wen XY, Stewart AK. Preclinical studies of the pan-Bcl inhibitor obatoclax (GX015-070) in multiple myeloma. Blood. 2007;109:5430–5438. PubMed
Kline MP, Rajkumar SV, Timm MM, Kimlinger TK, Haug JL, Lust JA, Greipp PR, Kumar S. ABT-737 an inhibitor of Bcl-2 family proteins is a potent inducer of apoptosis in multiple myeloma cells. Leukemia. 2007;21:1549–1560. PubMed
Kline MP, Rajkumar SV, Timm MM, Kimlinger TK, Haug JL, Lust JA, Greipp PR, Kumar S. R-(−)-gossypol (AT-101) activates programmed cell death in multiple myeloma cells. Experimental hematology. 2008;36:568–576. PubMed PMC
Deng J, Park D, Wang M, Nooka A, Deng Q, Matulis S, Kaufman J, Lonial S, Boise LH, Galipeau J, Deng X. BCL2-BH4 antagonist BDA-366 suppresses human myeloma growth. Oncotarget. 2016 doi: 10.18632/oncotarget.8513. PubMed DOI PMC
Bodet L, Gomez-Bougie P, Touzeau C, Dousset C, Descamps G, Maiga S, Avet-Loiseau H, Bataille R, Moreau P, Le Gouill S, Pellat-Deceunynck C, Amiot M. ABT-737 is highly effective against molecular subgroups of multiple myeloma. Blood. 2011;118:3901–3910. PubMed
Touzeau C, Dousset C, Le Gouill S, Sampath D, Leverson JD, Souers AJ, Maiga S, Bene MC, Moreau P, Pellat-Deceunynck C, Amiot M. The Bcl-2 specific BH3 mimetic ABT-199: a promising targeted therapy for t(11;14) multiple myeloma. Leukemia. 2014;28:210–212. PubMed PMC
Chen S, Dai Y, Pei XY, Myers J, Wang L, Kramer LB, Garnett M, Schwartz DM, Su F, Simmons GL, Richey JD, Larsen DG, Dent P, Orlowski RZ, Grant S. CDK inhibitors upregulate BH3-only proteins to sensitize human myeloma cells to BH3 mimetic therapies. Cancer research. 2012;72:4225–4237. PubMed PMC
Stewart AK, Trudel S, Zonder JA, Hayman SR, Erlichman C, Fruth B, LaPlant B, Sullivan D. Phase I trial of obatoclax mesylate in combination with bortezomib for treatment of relapsed multiple myeloma. ASCO Meeting Abstracts. 2012;30:8013.
Ramakrishnan V, Painuly U, Kimlinger T, Haug J, Rajkumar SV, Kumar S. Inhibitor of apoptosis proteins as therapeutic targets in multiple myeloma. Leukemia. 2014 PubMed PMC
Fulda S, Vucic D. Targeting IAP proteins for therapeutic intervention in cancer. Nature reviews Drug discovery. 2012;11:109–124. PubMed
Fulda S. Inhibitor of Apoptosis (IAP) proteins in hematological malignancies: molecular mechanisms and therapeutic opportunities. Leukemia. 2014 PubMed
Eckelman BP, Salvesen GS, Scott FL. Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO reports. 2006;7:988–994. PubMed PMC
Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J, Gillard JW, Jaquith JB, Morris SJ, Barker PA. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Molecular cell. 2008;30:689–700. PubMed
Shi S, Wang Q, Xu J, Jang JH, Padilla MT, Nyunoya T, Xing C, Zhang L, Lin Y. Synergistic anticancer effect of cisplatin and Chal-24 combination through IAP and c-FLIPL degradation, Ripoptosome formation and autophagy-mediated apoptosis. Oncotarget. 2015;6:1640–1651. doi: 10.18632/oncotarget.2746. PubMed DOI PMC
Liu Z, Sun C, Olejniczak ET, Meadows RP, Betz SF, Oost T, Herrmann J, Wu JC, Fesik SW. Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature. 2000;408:1004–1008. PubMed
Wu G, Chai J, Suber TL, Wu JW, Du C, Wang X, Shi Y. Structural basis of IAP recognition by Smac/DIABLO. Nature. 2000;408:1008–1012. PubMed
Desplanques G, Giuliani N, Delsignore R, Rizzoli V, Bataille R, Barille-Nion S. Impact of XIAP protein levels on the survival of myeloma cells. Haematologica. 2009;94:87–93. PubMed PMC
Nakagawa Y, Abe S, Kurata M, Hasegawa M, Yamamoto K, Inoue M, Takemura T, Suzuki K, Kitagawa M. IAP family protein expression correlates with poor outcome of multiple myeloma patients in association with chemotherapy-induced overexpression of multidrug resistance genes. American journal of hematology. 2006;81:824–831. PubMed
Fristedt Duvefelt C, Lub S, Agarwal P, Arngarden L, Hammarberg A, Maes K, Van Valckenborgh E, Vanderkerken K, Jernberg Wiklund H. Increased resistance to proteasome inhibitors in multiple myeloma mediated by cIAP2—implications for a combinatorial treatment. Oncotarget. 2015;6:20621–20635. doi: 10.18632/oncotarget.4139. PubMed DOI PMC
Chen KF, Lin JP, Shiau CW, Tai WT, Liu CY, Yu HC, Chen PJ, Cheng AL. Inhibition of Bcl-2 improves effect of LCL161 a SMAC mimetic in hepatocellular carcinoma cells. Biochemical pharmacology. 2012;84:268–277. PubMed
Greenstein S, Krett NL, Kurosawa Y, Ma C, Chauhan D, Hideshima T, Anderson KC, Rosen ST. Characterization of the MM. 1 human multiple myeloma (MM) cell lines: a model system to elucidate the characteristics behavior and signaling of steroid-sensitive and -resistant MM cells. Experimental hematology. 2003;31:271–282. PubMed
Bonapace L, Bornhauser BC, Schmitz M, Cario G, Ziegler U, Niggli FK, Schafer BW, Schrappe M, Stanulla M, Bourquin JP. Induction of autophagy-dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance. The Journal of clinical investigation. 2010;120:1310–1323. PubMed PMC
Yazbeck VY, Li C, Grandis JR, Zang Y, Johnson DE. Single-agent obatoclax (GX15-070) potently induces apoptosis and pro-survival autophagy in head and neck squamous cell carcinoma cells. Oral oncology. 2014;50:120–127. PubMed PMC
Tanida I, Ueno T, Kominami E. LC3 and Autophagy. Methods Mol Biol. 2008;445:77–88. PubMed
Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting. Autophagy. 2007;3:542–545. PubMed
Wroblewski D, Jiang CC, Croft A, Farrelly ML, Zhang XD, Hersey P. OBATOCLAX and ABT-737 Induce ER Stress Responses in Human Melanoma Cells that Limit Induction of Apoptosis. PloS one. 2013;8:e84073. PubMed PMC
Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Molecular cell. 2000;5:897–904. PubMed
Thuerauf DJ, Marcinko M, Belmont PJ, Glembotski CC. Effects of the isoform-specific characteristics of ATF6 alpha and ATF6 beta on endoplasmic reticulum stress response gene expression and cell viability. The Journal of biological chemistry. 2007;282:22865–22878. PubMed
Chen Y, Brandizzi F. IRE1: ER stress sensor and cell fate executor. Trends in cell biology. 2013;23:547–555. PubMed PMC
Li J, Lee AS. Stress induction of GRP78/BiP and its role in cancer. Current molecular medicine. 2006;6:45–54. PubMed
Rasche L, Duell J, Morgner C, Chatterjee M, Hensel F, Rosenwald A, Einsele H, Topp MS, Brandlein S. The natural human IgM antibody PAT-SM6 induces apoptosis in primary human multiple myeloma cells by targeting heat shock protein GRP78. PloS one. 2013;8:e63414. PubMed PMC
Zhang Y, Tseng CC, Tsai YL, Fu X, Schiff R, Lee AS. Cancer cells resistant to therapy promote cell surface relocalization of GRP78 which complexes with PI3K and enhances PI(3 4 5)P3 production. PloS one. 2013;8:e80071. PubMed PMC
de Ridder GG, Ray R, Pizzo SV. A murine monoclonal antibody directed against the carboxyl-terminal domain of GRP78 suppresses melanoma growth in mice. Melanoma research. 2012;22:225–235. PubMed
Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG, Colman PM, Day CL, Adams JM, Huang DC. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Molecular cell. 2005;17:393–403. PubMed
Nakamura M, Gotoh T, Okuno Y, Tatetsu H, Sonoki T, Uneda S, Mori M, Mitsuya H, Hata H. Activation of the endoplasmic reticulum stress pathway is associated with survival of myeloma cells. Leukemia & lymphoma. 2006;47:531–539. PubMed
Papandreou I, Denko NC, Olson M, Van Melckebeke H, Lust S, Tam A, Solow-Cordero DE, Bouley DM, Offner F, Niwa M, Koong AC. Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood. 2011;117:1311–1314. PubMed PMC
Cruickshanks N, Tang Y, Booth L, Hamed H, Grant S, Dent P. Lapatinib and obatoclax kill breast cancer cells through reactive oxygen species-dependent endoplasmic reticulum stress. Molecular pharmacology. 2012;82:1217–1229. PubMed PMC
Hu P, Han Z, Couvillon AD, Exton JH. Critical role of endogenous Akt/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death. The Journal of biological chemistry. 2004;279:49420–49429. PubMed
Jagannathan S, Abdel-Malek MA, Malek E, Vad N, Latif T, Anderson KC, Driscoll JJ. Pharmacologic screens reveal metformin that suppresses GRP78-dependent autophagy to enhance the anti-myeloma effect of bortezomib. Leukemia. 2015;29:2184–2191. PubMed PMC
Rasche L, Duell J, Castro IC, Dubljevic V, Chatterjee M, Knop S, Hensel F, Rosenwald A, Einsele H, Topp MS, Brandlein S. GRP78-directed immunotherapy in relapsed or refractory multiple myeloma - results from a phase 1 trial with the monoclonal immunoglobulin M antibody PAT-SM6. Haematologica. 2015;100:377–384. PubMed PMC
Ramakrishnan V, Timm M, Haug JL, Kimlinger TK, Wellik LE, Witzig TE, Rajkumar SV, Adjei AA, Kumar S. Sorafenib a dual Raf kinase/vascular endothelial growth factor receptor inhibitor has significant anti-myeloma activity and synergizes with common anti-myeloma drugs. Oncogene. 2010;29:1190–1202. PubMed PMC
Ramakrishnan V, Ansell S, Haug J, Grote D, Kimlinger T, Stenson M, Timm M, Wellik L, Halling T, Rajkumar SV, Kumar S. MRK003 a gamma-secretase inhibitor exhibits promising in vitro pre-clinical activity in multiple myeloma and non-Hodgkin's lymphoma. Leukemia. 2012;26:340–348. PubMed PMC
Ramakrishnan V, Kimlinger T, Haug J, Painuly U, Wellik L, Halling T, Rajkumar SV, Kumar S. Anti-myeloma activity of Akt inhibition is linked to the activation status of PI3K/Akt and MEK/ERK pathway. PloS one. 2012;7:e50005. PubMed PMC
Ramakrishnan V, Kimlinger T, Haug J, Timm M, Wellik L, Halling T, Pardanani A, Tefferi A, Rajkumar SV, Kumar S. TG101209 a novel JAK2 inhibitor has significant in vitro activity in multiple myeloma and displays preferential cytotoxicity for CD45+ myeloma cells. American journal of hematology. 2010;85:675–686. PubMed PMC
Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Advances in enzyme regulation. 1984;22:27–55. PubMed