• This record comes from PubMed

HCVIVdb: The hepatitis-C IRES variation database

. 2016 Aug 15 ; 16 (1) : 187. [epub] 20160815

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 27527702
PubMed Central PMC4986321
DOI 10.1186/s12866-016-0804-6
PII: 10.1186/s12866-016-0804-6
Knihovny.cz E-resources

BACKGROUND: Sequence variability in the hepatitis C virus (HCV) genome has led to the development and classification of six genotypes and a number of subtypes. The HCV 5' untranslated region mainly comprises an internal ribosomal entry site (IRES) responsible for cap-independent synthesis of the viral polyprotein and is conserved among all HCV genotypes. DESCRIPTION: Considering the possible high impact of variations in HCV IRES on viral protein production and thus virus replication, we decided to collect the available data on known nucleotide variants in the HCV IRES and their impact on IRES function in translation initiation. The HCV IRES variation database (HCVIVdb) is a collection of naturally occurring and engineered mutation entries for the HCV IRES. Each entry contains contextual information pertaining to the entry such as the HCV genotypic background and links to the original publication. Where available, quantitative data on the IRES efficiency in translation have been collated along with details on the reporter system used to generate the data. Data are displayed both in a tabular and graphical formats and allow direct comparison of results from different experiments. Together the data provide a central resource for researchers in the IRES and hepatitis C-oriented fields. CONCLUSION: The collation of over 1900 mutations enables systematic analysis of the HCV IRES. The database is mainly dedicated to detailed comparative and functional analysis of all the HCV IRES domains, which can further lead to the development of site-specific drug designs and provide a guide for future experiments. HCVIVdb is available at http://www.hcvivdb.org .

See more in PubMed

Choo QL, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral-hepatitis genome. Science. 1989;244(4902):359–362. doi: 10.1126/science.2523562. PubMed DOI

Gravitz L. A smouldering public-health crisis. Nature. 2011;474(7350):S2–S4. doi: 10.1038/474S2a. PubMed DOI

Sarrazin C. The importance of resistance to direct antiviral drugs in HCV infection in clinical practice. J Hepatol. 2016;64(2):486–504. doi: 10.1016/j.jhep.2015.09.011. PubMed DOI

Chen ZW, Li H, Ren H, Hu P. Global prevalence of pre-existing HCV variants resistant to direct-acting antiviral agents (DAAs): mining the GenBank HCV genome data. Sci Rep. 2016;6:20310. doi: 10.1038/srep20310. PubMed DOI PMC

Smith DB, Pathirana S, Davidson F, Lawlor E, Power J, Yap PL, et al. The origin of hepatitis C virus genotypes. J Gen Virol. 1997;78:321–328. doi: 10.1099/0022-1317-78-2-321. PubMed DOI

Brown EA, Zhang HC, Ping LH, Lemon SM. Secondary structure of the 5′ nontranslated regions of hepatitis-C virus and pestivirus genomic RNAs. Nucleic Acids Res. 1992;20(19):5041–5045. doi: 10.1093/nar/20.19.5041. PubMed DOI PMC

Wang C, Sarnow P, Siddiqui A. Translation of human hepatitis C virus RNA in cultured cells is mediated by an internal ribosome-binding mechanism. J Virol. 1993;67(6):3338–3344. PubMed PMC

Quade N, Boehringer D, Leibundgut M, van den Heuvel J, Ban N. Cryo-EM structure of Hepatitis C virus IRES bound to the human ribosome at 3.9-A resolution. Nat Commun. 2015;6:7646. doi: 10.1038/ncomms8646. PubMed DOI PMC

Angulo J, Ulryck N, Deforges J, Chamond N, Lopez-Lastra M, Masquida B, et al. LOOP IIId of the HCV IRES is essential for the structural rearrangement of the 40S-HCV IRES complex. Nucleic Acids Res. 2016;44(3):1309–1325. doi: 10.1093/nar/gkv1325. PubMed DOI PMC

Yamamoto H, Collier M, Loerke J, Ismer J, Schmidt A, Hilal T, et al. Molecular architecture of the ribosome-bound Hepatitis C Virus internal ribosomal entry site RNA. Embo J. 2015;34(24):3042–3058. doi: 10.15252/embj.201592469. PubMed DOI PMC

Hashem Y, des Georges A, Dhote V, Langlois R, Liao HY, Grassucci RA et al. Hepatitis-C-virus-like internal ribosome entry sites displace eIF3 to gain access to the 40S subunit. Nature. 2013;advance online publication. doi:10.1038/nature12658. http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature12658.html#supplementary-information PubMed PMC

Khawaja A, Vopalensky V, Pospisek M. Understanding the potential of hepatitis C virus internal ribosome entry site domains to modulate translation initiation via their structure and function. Wiley Interdiscip Rev RNA. 2015;6(2):211–224. doi: 10.1002/wrna.1268. PubMed DOI PMC

Easton LE, Locker N, Lukavsky PJ. Conserved functional domains and a novel tertiary interaction near the pseudoknot drive translational activity of hepatitis C virus and hepatitis C virus-like internal ribosome entry sites. Nucleic Acids Res. 2009;37(16):5537–5549. doi: 10.1093/nar/gkp588. PubMed DOI PMC

Berry KE, Waghray S, Mortimer SA, Bai Y, Doudna JA. Crystal structure of the HCV IRES central domain reveals strategy for start-codon positioning. Structure. 2011;19(10):1456–1466. doi: 10.1016/j.str.2011.08.002. PubMed DOI PMC

Lukavsky PJ, Otto GA, Lancaster AM, Sarnow P, Puglisi JD. Structures of two RNA domains essential for hepatitis C virus internal ribosome entry site function. Nat Struct Biol. 2000;7(12):1105–1110. doi: 10.1038/81951. PubMed DOI

Psaridi L, Georgopoulou U, Varaklioti A, Mavromara P. Mutational analysis of a conserved tetraloop in the 5′ untranslated region of hepatitis C virus identifies a novel RNA element essential for the internal ribosome entry site function. Febs Lett. 1999;453(1–2):49–53. doi: 10.1016/S0014-5793(99)00662-6. PubMed DOI

Pickett BE, Sadat EL, Zhang Y, Noronha JM, Squires RB, Hunt V, et al. ViPR: an open bioinformatics database and analysis resource for virology research. Nucleic Acids Res. 2012;40(D1):D593–D598. doi: 10.1093/nar/gkr859. PubMed DOI PMC

Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC

Sizova DV, Kolupaeva VG, Pestova TV, Shatsky IN, Hellen CU. Specific interaction of eukaryotic translation initiation factor 3 with the 5′ nontranslated regions of hepatitis C virus and classical swine fever virus RNAs. J Virol. 1998;72(6):4775–4782. PubMed PMC

Motazakker M, Preikschat P, Elliott J, Smith CA, Mills PR, Oien K, et al. Translation efficiencies of the 5′-untranslated region of genotypes 1a and 3a in hepatitis C infected patients. J Med Virol. 2007;79(3):259–269. doi: 10.1002/jmv.20794. PubMed DOI

Forton DM, Karayiannis P, Mahmud N, Taylor-Robinson SD, Thomas HC. Identification of unique hepatitis C virus quasispecies in the central nervous system and comparative analysis of internal translational efficiency of brain, liver, and serum variants. J Virol. 2004;78(10):5170–5183. doi: 10.1128/JVI.78.10.5170-5183.2004. PubMed DOI PMC

Barria MI, Gonzalez A, Vera-Otarola J, Leon U, Vollrath V, Marsac D, et al. Analysis of natural variants of the hepatitis C virus internal ribosome entry site reveals that primary sequence plays a key role in cap-independent translation. Nucleic Acids Res. 2009;37(3):957–971. doi: 10.1093/nar/gkn1022. PubMed DOI PMC

Kieft JS, Zhou KH, Jubin R, Murray MG, Lau JYN, Doudna JA. The hepatitis C virus internal ribosome entry site adopts an ion-dependent tertiary fold. J Mol Biol. 1999;292(3):513–529. doi: 10.1006/jmbi.1999.3095. PubMed DOI

Jubin R, Vantuno NE, Kieft JS, Murray MG, Doudna JA, Lau JYN, et al. Hepatitis C virus internal ribosome entry site (IRES) stem loop IIId contains a phylogenetically conserved GGG triplet essential for translation and IRES folding. J Virol. 2000;74(22):10430–10437. doi: 10.1128/JVI.74.22.10430-10437.2000. PubMed DOI PMC

Laporte J, Malet I, Andrieu T, Thibault V, Toulme JJ, Wychowski C, et al. Comparative analysis of translation efficiencies of hepatitis C virus 5′ untranslated regions among intra individual quasi species present in chronic infection: Opposite behaviors depending on cell type. J Virol. 2000;74(22):10827–10833. doi: 10.1128/JVI.74.22.10827-10833.2000. PubMed DOI PMC

Malygin AA, Kossinova OA, Shatsky IN, Karpova GG. HCV IRES interacts with the 18S rRNA to activate the 40S ribosome for subsequent steps of translation initiation. Nucleic Acids Res. 2013;doi:10.1093/nar/gkt632 PubMed PMC

Matsuda D, Mauro VP. Base pairing between hepatitis C virus RNA and 18S rRNA is required for IRES-dependent translation initiation in vivo. Proc Natl Acad Sci U S A. 2014;111(43):15385–15389. doi: 10.1073/pnas.1413472111. PubMed DOI PMC

Combet C, Garnier N, Charavay L, Grando D, Crisan D, Lopez J, et al. euHCVdb: the European hepatitis C virus database. Nucleic Acids Res. 2007;35:D363–D366. doi: 10.1093/nar/gkl970. PubMed DOI PMC

Gaschen B, Kuiken C, Korber B, Foley B. Retrieval and on-the-fly alignment of sequence fragments from the HIV database. Bioinformatics. 2001;17(5):415–418. doi: 10.1093/bioinformatics/17.5.415. PubMed DOI

Kuiken C, Hraber P, Thurmond J, Yusim K. The hepatitis C sequence database in Los Alamos. Nucleic Acids Res. 2008;36:D512–D516. doi: 10.1093/nar/gkm962. PubMed DOI PMC

Honda M, Brown EA, Lemon SM. Stability of a stem-loop involving the initiator AUG controls the efficiency of internal initiation of translation on hepatitis C virus RNA. RNA. 1996;2(10):955–968. PubMed PMC

Zhao WD, Wimmer E. Genetic analysis of a poliovirus/hepatitis C virus chimera: new structure for domain II of the internal ribosomal entry site of hepatitis C virus. J Virol. 2001;75(8):3719–3730. doi: 10.1128/JVI.75.8.3719-3730.2001. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...