Expression Profile of Six RNA-Binding Proteins in Pulmonary Sarcoidosis
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu srovnávací studie, časopisecké články
PubMed
27575817
PubMed Central
PMC5004853
DOI
10.1371/journal.pone.0161669
PII: PONE-D-16-05276
Knihovny.cz E-zdroje
- MeSH
- bronchiální astma genetika metabolismus MeSH
- chronická obstrukční plicní nemoc genetika metabolismus MeSH
- dospělí MeSH
- fosfohydroláza PTEN genetika metabolismus MeSH
- fosfoproteiny genetika metabolismus MeSH
- GPI-vázané proteiny genetika metabolismus MeSH
- heterogenní jaderný ribonukleoprotein D genetika metabolismus MeSH
- heterogenní jaderný ribonukleoprotein D0 MeSH
- HuR protein genetika metabolismus MeSH
- idiopatické intersticiální pneumonie genetika metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- nukleolin MeSH
- plicní sarkoidóza genetika metabolismus MeSH
- poly(A)-vazebné proteiny genetika metabolismus MeSH
- proteiny vázající RNA genetika metabolismus MeSH
- regulace genové exprese MeSH
- senioři MeSH
- stanovení celkové genové exprese metody MeSH
- T-buněčný intracelulární antigen 1 MeSH
- T-lymfocyty metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- ELAVL1 protein, human MeSH Prohlížeč
- fosfohydroláza PTEN MeSH
- fosfoproteiny MeSH
- GPI-vázané proteiny MeSH
- heterogenní jaderný ribonukleoprotein D MeSH
- heterogenní jaderný ribonukleoprotein D0 MeSH
- HNRNPD protein, human MeSH Prohlížeč
- HuR protein MeSH
- PCBP2 protein, human MeSH Prohlížeč
- poly(A)-vazebné proteiny MeSH
- proteiny vázající RNA MeSH
- PTEN protein, human MeSH Prohlížeč
- RECK protein, human MeSH Prohlížeč
- T-buněčný intracelulární antigen 1 MeSH
- TIA1 protein, human MeSH Prohlížeč
- TIAL1 protein, human MeSH Prohlížeč
BACKGROUND: Sarcoidosis is characterised by up-regulation of cytokines and chemokine ligands/receptors and proteolytic enzymes. This pro-inflammatory profile is regulated post-transcriptionally by RNA-binding proteins (RBPs). We investigated in vivo expression of six RBPs (AUF1, HuR, NCL, TIA, TIAR, PCBP2) and two inhibitors of proteolytic enzymes (RECK, PTEN) in pulmonary sarcoidosis and compared it to the expression in four control groups of healthy individuals and patients with other respiratory diseases: chronic obstructive pulmonary disease (COPD), asthma and idiopathic interstitial pneumonias (IIPs). METHODS: RT-PCR was used to quantify the mRNAs in bronchoalveolar (BA) cells obtained from 50 sarcoidosis patients, 23 healthy controls, 30 COPD, 19 asthmatic and 19 IIPs patients. Flow cytometry was used to assess intracellular protein expression of AUF1 and HuR in peripheral blood T lymphocytes (PBTLs) obtained from 9 sarcoidosis patients and 6 healthy controls. RESULTS: Taking the stringent conditions for multiple comparisons into consideration, we consistently observed in the primary analysis including all patients regardless of smoking status as well as in the subsequent sub-analysis limited for never smokers that the BA mRNA expression of AUF1 (p<0.001), TIA (p<0.001), NCL (p<0.01) and RECK (p<0.05) was decreased in sarcoidosis compared to healthy controls. TIA mRNA was also decreased in sarcoidosis compared to both obstructive pulmonary diseases (COPD and asthma; p<0.001) but not compared to IIPs. There were several positive correlations between RECK mRNA and RBP mRNAs in BA cells. Also sarcoidosis CD3+, CD4+ and CD8+ PBTLs displayed lower mean fluorescence intensity of AUF1 (p≤0.02) and HuR (p≤0.03) proteins than control healthy PBTLs. CONCLUSION: mRNA expressions of three RBPs (AUF1, TIA and NCL) and their potential target mRNA encoding RECK in BA cells and additionally protein expression of AUF1 and HuR in PBTLs were down-regulated in our sarcoidosis patients compared to healthy individuals. Its significance, e.g. for stability of mRNAs encoding pro-inflammatory factors, should be further explored in sarcoidosis.
Department of Respiratory Medicine Palacky University Olomouc Czech Republic
Respiratory Medicine Unit Department of Medicine Karolinska Institutet Stockholm Sweden
Zobrazit více v PubMed
Statement on sarcoidosis. Joint Statement of the American Thoracic Society (ATS), the European Respiratory Society (ERS) and the World Association of Sarcoidosis and Other Granulomatous Disorders (WASOG) adopted by the ATS Board of Directors and by the ERS Executive Committee, February 1999. Am J Respir Crit Care Med. 1999;160(2):736–55. Epub 1999/08/03. 10.1164/ajrccm.160.2.ats4-99 . PubMed DOI
Valeyre D, Prasse A, Nunes H, Uzunhan Y, Brillet PY, Muller-Quernheim J. Sarcoidosis. Lancet. 2014;383(9923):1155–67. Epub 2013/10/05. 10.1016/S0140-6736(13)60680-7 . PubMed DOI
Patterson KC, Hogarth K, Husain AN, Sperling AI, Niewold TB. The clinical and immunologic features of pulmonary fibrosis in sarcoidosis. Transl Res. 2012;160(5):321–31. 10.1016/j.trsl.2012.03.005 PubMed DOI PMC
Henry MT, McMahon K, Mackarel AJ, Prikk K, Sorsa T, Maisi P, et al. Matrix metalloproteinases and tissue inhibitor of metalloproteinase-1 in sarcoidosis and IPF. The European respiratory journal: official journal of the European Society for Clinical Respiratory Physiology. 2002;20(5):1220–7. PubMed
Fireman E, Kraiem Z, Sade O, Greif J, Fireman Z. Induced sputum-retrieved matrix metalloproteinase 9 and tissue metalloproteinase inhibitor 1 in granulomatous diseases. Clinical and experimental immunology. 2002;130(2):331–7. PubMed PMC
Piotrowski WJ, Kiszałkiewicz J, Górski P, Antczak A, Górski W, Pastuszak-Lewandoska D, et al. Immunoexpression of TGF-β/Smad and VEGF-A proteins in serum and BAL fluid of sarcoidosis patients. BMC Immunology. 2015;16(1):1–8. 10.1186/s12865-015-0123-y PubMed DOI PMC
Oshita Y, Koga T, Kamimura T, Matsuo K, Rikimaru T, Aizawa H. Increased circulating 92 kDa matrix metalloproteinase (MMP-9) activity in exacerbations of asthma. Thorax. 2003;58(9):757–60. PubMed PMC
Dancer RCA, Wood AM, Thickett DR. Metalloproteinases in idiopathic pulmonary fibrosis. European Respiratory Journal. 2011;38(6):1461–7. 10.1183/09031936.00024711 PubMed DOI
Navratilova Z, Zatloukal J, Kriegova E, Kolek V, Petrek M. Simultaneous up-regulation of matrix metalloproteinases 1, 2, 3, 7, 8, 9 and tissue inhibitors of metalloproteinases 1, 4 in serum of patients with chronic obstructive pulmonary disease. Respirology. 2012;17(6):1006–12. Epub 2012/05/18. 10.1111/j.1440-1843.2012.02197.x . PubMed DOI
Kafasla P, Skliris A, Kontoyiannis DL. Post-transcriptional coordination of immunological responses by RNA-binding proteins. Nature immunology. 2014;15(6):492–502. 10.1038/ni.2884 PubMed DOI
Gerstberger S, Hafner M, Tuschl T. A census of human RNA-binding proteins. Nat Rev Genet. 2014;15(12):829–45. 10.1038/nrg3813 PubMed DOI PMC
Ivanov P, Anderson P. Post-transcriptional regulatory networks in immunity. Immunological reviews. 2013;253(1):253–72. Epub 2013/04/05. 10.1111/imr.12051 . PubMed DOI PMC
Gubin MM, Techasintana P, Magee JD, Dahm GM, Calaluce R, Martindale JL, et al. Conditional knockout of the RNA-binding protein HuR in CD4(+) T cells reveals a gene dosage effect on cytokine production. Mol Med. 2014;20:93–108. 10.2119/molmed.2013.00127 PubMed DOI PMC
Stellato C, Gubin MM, Magee JD, Fang X, Fan J, Tartar DM, et al. Coordinate regulation of GATA-3 and Th2 cytokine gene expression by the RNA-binding protein HuR. J Immunol. 2011;187(1):441–9. 10.4049/jimmunol.1001881 PubMed DOI PMC
Paschoud S, Dogar AM, Kuntz C, Grisoni-Neupert B, Richman L, Kuhn LC. Destabilization of interleukin-6 mRNA requires a putative RNA stem-loop structure, an AU-rich element, and the RNA-binding protein AUF1. Molecular and cellular biology. 2006;26(22):8228–41. PubMed PMC
Chowdhury S, Dijkhuis A, Steiert S, Lutter R. IL-17 attenuates degradation of ARE-mRNAs by changing the cooperation between AU-binding proteins and microRNA16. PLoS genetics. 2013;9(9):26. PubMed PMC
Abdelmohsen K, Gorospe M. RNA-binding protein nucleolin in disease. RNA biology. 2012;9(6):799–808. Epub 2012/05/24. 10.4161/rna.19718 PubMed DOI PMC
Hirano K, Miki Y, Hirai Y, Sato R, Itoh T, Hayashi A, et al. A multifunctional shuttling protein nucleolin is a macrophage receptor for apoptotic cells. The Journal of biological chemistry. 2005;280(47):39284–93. PubMed
Liu W, Rosenberg GA, Liu KJ. AUF-1 mediates inhibition by nitric oxide of lipopolysaccharide-induced matrix metalloproteinase-9 expression in cultured astrocytes. J Neurosci Res. 2006;84(2):360–9. PubMed
Fahling M, Steege A, Perlewitz A, Nafz B, Mrowka R, Persson PB, et al. Role of nucleolin in posttranscriptional control of MMP-9 expression. Biochimica et biophysica acta. 2005;1731(1):32–40. Epub 2005/09/13. 10.1016/j.bbaexp.2005.08.005 . PubMed DOI
Akool el S, Kleinert H, Hamada FM, Abdelwahab MH, Forstermann U, Pfeilschifter J, et al. Nitric oxide increases the decay of matrix metalloproteinase 9 mRNA by inhibiting the expression of mRNA-stabilizing factor HuR. Molecular and cellular biology. 2003;23(14):4901–16. Epub 2003/07/02. PubMed PMC
Mukherjee N, Corcoran DL, Nusbaum JD, Reid DW, Georgiev S, Hafner M, et al. Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. Molecular cell. 2011;43(3):327–39. Epub 2011/07/05. 10.1016/j.molcel.2011.06.007 PubMed DOI PMC
Park MJ, Kim MS, Park IC, Kang HS, Yoo H, Park SH, et al. PTEN suppresses hyaluronic acid-induced matrix metalloproteinase-9 expression in U87MG glioblastoma cells through focal adhesion kinase dephosphorylation. Cancer research. 2002;62(21):6318–22. Epub 2002/11/05. . PubMed
Takahashi C, Sheng Z, Horan TP, Kitayama H, Maki M, Hitomi K, et al. Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK. Proceedings of the National Academy of Sciences of the United States of America. 1998;95(22):13221–6. Epub 1998/10/28. PubMed PMC
Yoon JH, De S, Srikantan S, Abdelmohsen K, Grammatikakis I, Kim J, et al. PAR-CLIP analysis uncovers AUF1 impact on target RNA fate and genome integrity. Nat Commun. 2014;5(5248). PubMed PMC
Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease—GOLD executive summary. Am J Resp Crit Care. 2007;176(6):532–55. 10.1164/rccm.200703-456SO . PubMed DOI
Global Initiative for Asthma. Medicine on the Net. 2007;13(9):14-.
Katzenstein AL, Myers JL. Nonspecific interstitial pneumonia and the other idiopathic interstitial pneumonias: classification and diagnostic criteria. The American journal of surgical pathology. 2000;24(1):1–3. Epub 2000/01/13. . PubMed
American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias. This joint statement of the American Thoracic Society (ATS), and the European Respiratory Society (ERS) was adopted by the ATS board of directors, June 2001 and by the ERS Executive Committee, June 2001. Am J Respir Crit Care Med. 2002;165(2):277–304. Epub 2002/01/16. 10.1164/ajrccm.165.2.ats01 . PubMed DOI
Travis WD, Costabel U, Hansell DM, King TE Jr., Lynch DA, Nicholson AG, et al. An official American Thoracic Society/European Respiratory Society statement: Update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med. 2013;188(6):733–48. Epub 2013/09/17. 10.1164/rccm.201308-1483ST . PubMed DOI PMC
Petrek M, Gibejova A, Drabek J, Mrazek F, Kolek V, Weigl E, et al. CC chemokine receptor 5 (CCR5) mRNA expression in pulmonary sarcoidosis. Immunol Lett. 2002;80(3):189–93. 10.1016/s0165-2478(01)00324-8 . PubMed DOI
Kriegova E, Arakelyan A, Fillerova R, Zatloukal J, Mrazek F, Navratilova Z, et al. PSMB2 and RPL32 are suitable denominators to normalize gene expression profiles in bronchoalveolar cells. BMC Mol Biol. 2008;9(69):1471–2199. PubMed PMC
Hudy MH, Proud D. Cigarette smoke enhances human rhinovirus-induced CXCL8 production via HuR-mediated mRNA stabilization in human airway epithelial cells. Respiratory research. 2013;14:88 Epub 2013/08/31. 10.1186/1465-9921-14-88 PubMed DOI PMC
Glader P, Moller S, Lilja J, Wieslander E, Lofdahl CG, von Wachenfeldt K. Cigarette smoke extract modulates respiratory defence mechanisms through effects on T-cells and airway epithelial cells. Respiratory medicine. 2006;100(5):818–27. PubMed
Grunewald J, Eklund A. Role of CD4+ T cells in sarcoidosis. Proceedings of the American Thoracic Society. 2007;4(5):461–4. PubMed PMC
Kechavarzi B, Janga SC. Dissecting the expression landscape of RNA-binding proteins in human cancers. Genome biology. 2014;15(1):R14 Epub 2014/01/15. 10.1186/gb-2014-15-1-r14 PubMed DOI PMC
Techasintana P, Davis JW, Gubin MM, Magee JD, Atasoy U. Transcriptomic-Wide Discovery of Direct and Indirect HuR RNA Targets in Activated CD4+ T Cells. PloS one. 2015;10(7). PubMed PMC
Raghavan A, Ogilvie RL, Reilly C, Abelson ML, Raghavan S, Vasdewani J, et al. Genome-wide analysis of mRNA decay in resting and activated primary human T lymphocytes. Nucleic acids research. 2002;30(24):5529–38. PubMed PMC
Vestbo J, Hurd SS, Agusti AG, Jones PW, Vogelmeier C, Anzueto A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2013;187(4):347–65. Epub 2012/08/11. 10.1164/rccm.201204-0596PP . PubMed DOI
Skjot-Arkil H, Clausen RE, Nguyen QH, Wang Y, Zheng Q, Martinez FJ, et al. Measurement of MMP-9 and -12 degraded elastin (ELM) provides unique information on lung tissue degradation. BMC pulmonary medicine. 2012;12(1):34 Epub 2012/07/24. 10.1186/1471-2466-12-34 . PubMed DOI PMC
Paulissen G, Rocks N, Quesada-Calvo F, Gosset P, Foidart JM, Noel A, et al. Expression of ADAMs and their inhibitors in sputum from patients with asthma. Mol Med. 2006;12(7–8):171–9. Epub 2006/11/08. 10.2119/2006-00028.Paulissen PubMed DOI PMC