A European Spectrum of Pharmacogenomic Biomarkers: Implications for Clinical Pharmacogenomics
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
U41 HG006941
NHGRI NIH HHS - United States
PubMed
27636550
PubMed Central
PMC5026342
DOI
10.1371/journal.pone.0162866
PII: PONE-D-16-15209
Knihovny.cz E-zdroje
- MeSH
- antikoagulancia aplikace a dávkování farmakokinetika MeSH
- cytochrom P450 CYP2C9 genetika MeSH
- epoxidreduktasy vitaminu K genetika MeSH
- etnicita genetika MeSH
- farmakogenetika * MeSH
- genetické markery * MeSH
- lidé MeSH
- shluková analýza MeSH
- warfarin aplikace a dávkování farmakokinetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- antikoagulancia MeSH
- cytochrom P450 CYP2C9 MeSH
- epoxidreduktasy vitaminu K MeSH
- genetické markery * MeSH
- VKORC1 protein, human MeSH Prohlížeč
- warfarin MeSH
Pharmacogenomics aims to correlate inter-individual differences of drug efficacy and/or toxicity with the underlying genetic composition, particularly in genes encoding for protein factors and enzymes involved in drug metabolism and transport. In several European populations, particularly in countries with lower income, information related to the prevalence of pharmacogenomic biomarkers is incomplete or lacking. Here, we have implemented the microattribution approach to assess the pharmacogenomic biomarkers allelic spectrum in 18 European populations, mostly from developing European countries, by analyzing 1,931 pharmacogenomics biomarkers in 231 genes. Our data show significant inter-population pharmacogenomic biomarker allele frequency differences, particularly in 7 clinically actionable pharmacogenomic biomarkers in 7 European populations, affecting drug efficacy and/or toxicity of 51 medication treatment modalities. These data also reflect on the differences observed in the prevalence of high-risk genotypes in these populations, as far as common markers in the CYP2C9, CYP2C19, CYP3A5, VKORC1, SLCO1B1 and TPMT pharmacogenes are concerned. Also, our data demonstrate notable differences in predicted genotype-based warfarin dosing among these populations. Our findings can be exploited not only to develop guidelines for medical prioritization, but most importantly to facilitate integration of pharmacogenomics and to support pre-emptive pharmacogenomic testing. This may subsequently contribute towards significant cost-savings in the overall healthcare expenditure in the participating countries, where pharmacogenomics implementation proves to be cost-effective.
Boğaziçi University Istanbul Turkey
Center for Molecular Medicine Slovak Academy of Sciences Bratislava Slovakia
Center for Proteomic and Genomic Research Observatory Cape Town South Africa
Charles University 2nd Faculty of Medicine and University Hospital Motol Prague Czech Republic
Comenius University Faculty of Natural Sciences Bratislava Slovakia
Department of Genetics and Fundamental Medicine Bashkir State University Ufa Russia
Department of Human and Medical Genetics Faculty of Medicine Vilnius University Vilnius Lithuania
Erasmus University Medical Center Department of Clinical Chemistry Rotterdam the Netherlands
Institute of Biochemistry and Biophysics Polish Academy of Sciences Warsaw Poland
Institute of Biochemistry and Genetics Ufa Scientific Center Russian Academy of Sciences Ufa Russia
Institute of Hereditary Pathology Ukrainian National Academy of Medical Sciences Lviv Ukraine
King Faisal Specialist Hospital and Research Centre Riyadh Saudi Arabia
Moffitt Cancer Center Tampa FL United States of America
North Carolina State University Department of Statistics Raleigh NC United States of America
RIKEN Institute Center for Genomic Medicine Laboratory for International Alliance Yokohama Japan
The Golden Helix Foundation London United Kingdom
University Hospital Centre Zagreb Croatia
University of Athens Faculty of Pharmacy Department of Pharmaceutical Chemistry Athens Greece
University of Cagliari Department of Biomedical Sciences Cagliari Italy
University of Debrecen Debrecen Hungary
University of Kiel Institute for Experimental and Clinical Pharmacology Kiel Germany
University of Ljubljana Faculty of Medicine Ljubljana Slovenia
University of Malta Department of Applied Biomedical Science Faculty of Health Sciences Msida Malta
University of Malta Faculty of Medicine Department of Surgery Msida Malta
University of Patras School of Health Sciences Department of Pharmacy Patras Greece
University of Rome Tor Vergata Department of Biomedicine and Prevention Rome Italy
University of Santiago de Compostela Santiago Spain
Zobrazit více v PubMed
Squassina A, Manchia M, Manolopoulos VG, Artac M, Lappa-Manakou C, Karkabouna S, et al. Realities and expectations of pharmacogenomics and personalized medicine: impact of translating genetic knowledge into clinical practice. Pharmacogenomics. 2010;11(8):1149–1167 10.2217/pgs.10.97 PubMed DOI
Davies EC, Green CF, Mottram DR, Pirmohamed M. Interpreting adverse drug reaction (ADR) reports as hospital patient safety incidents. Br J Clin Pharmacol. 2010;70(1):102–108. 10.1111/j.1365-2125.2010.03671.x PubMed DOI PMC
Zineh I, Pacanowski MA. Pharmacogenomics in the assessment of therapeutic risks versus benefits: inside the United States Food and Drug Administration. Pharmacotherapy, 2011;31(8):729–735. 10.1592/phco.31.8.729 PubMed DOI
Ehmann F, Caneva L, Prasad K, Paulmichl M, Maliepaard M, Llerena A, et al. Pharmacogenomic information in drug labels: European Medicines Agency perspective. Pharmacogenomics J. 2015;15(3):201–210. 10.1038/tpj.2014.86 PubMed DOI
Arnold FL, Fukunaga S, Kusama M, Matsuki N, Ono S. Assessment of factors associated with dose differences between Japan and the United States. Clin Pharmacol Ther. 2014;95(5):542–549. 10.1038/clpt.2013.231 PubMed DOI
Wilson JF, Weale ME, Smith AC, Gratrix F, Fletcher B, Thomas MG, et al. Population genetic structure of variable drug response. Nat Genet. 2001;29(3):265–269 PubMed
Ge D, Fellay J, Thompson AJ, Simon JS, Shianna KV, Urban TJ, et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature. 2009;461(7262):399–401. 10.1038/nature08309 PubMed DOI
Roewer L, Croucher PJ, Willuweit S, Lu TT, Kayser M, Lessig R, et al. Signature of recent historical events in the European Y-chromosomal STR haplotype distribution. Hum Genet. 2005;116:279–291. PubMed
Giardine B, Borg J, Higgs DR, Peterson KR, Philipsen S, Maglott D, et al. Systematic documentation and analysis of human genetic variation in hemoglobinopathies using the microattribution approach. Nat Genet. 2011;43(4):295–301. 10.1038/ng.785 PubMed DOI PMC
Patrinos GP, Cooper DN, van Mulligen E, Gkantouna V, Tzimas G, Tatum Z, et al. Microattribution and nanopublication as means to incentivize the placement of human genome variation data into the public domain. Hum Mutat. 2012;33(11): 1503–1512. 10.1002/humu.22144 PubMed DOI
Weale ME. Quality control for genome-wide association studies. Methods Mol Biol, 2010;628:341–72. 10.1007/978-1-60327-367-1_19 PubMed DOI
Papadopoulos P, Viennas E, Gkantouna V, Pavlidis C, Bartsakoulia M, Ioannou ZM, et al. Developments in FINDbase worldwide database for clinically relevant genomic variation allele frequencies. Nucleic Acids Res. 2014;42(Database issue):D1020–D1026. 10.1093/nar/gkt1125 PubMed DOI PMC
International Warfarin Pharmacogenetics Consortium, Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, Lee MT, et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med. 2009;360(8):753–764 10.1056/NEJMoa0809329 PubMed DOI PMC
International HapMap Consortium. The International HapMap Project. Nature. 2003;426(6968):789–796. PubMed
Ramsey LB, Johnson SG, Caudle KE, Haidar CE, Voora D, Wilke RA, et al. The clinical pharmacogenetics implementation consortium guideline for SLCO1B1 and simvastatin-induced myopathy: 2014 update. Clin Pharmacol Ther. 2014;96(4):423–428. 10.1038/clpt.2014.125 PubMed DOI PMC
Wilke RA, Ramsey LB, Johnson SG, Maxwell WD, McLeod HL, Voora D, et al. The clinical pharmacogenomics implementation consortium: CPIC guideline for SLCO1B1 and simvastatin-induced myopathy. Clin Pharmacol Ther. 2012;92(1):112–117. 10.1038/clpt.2012.57 PubMed DOI PMC
Van Driest SL, Shi Y, Bowton EA, Schildcrout JS, Peterson JF, Pulley J, et al. Clinically actionable genotypes among 10,000 patients with preemptive pharmacogenomic testing. Clin Pharmacol Ther. 2014;95(4):423–431. 10.1038/clpt.2013.229 PubMed DOI PMC
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000;155(2):945–959. PubMed PMC
Limdi NA. Warfarin pharmacogenetics: challenges and opportunities for clinical translation. Front Pharmacol, 2012;3:183 10.3389/fphar.2012.00183 PubMed DOI PMC
Sosnay PR, Siklosi KR, Van Goor F, Kaniecki K, Yu H, Sharma N, et al. Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene. Nat Genet. 2013;45(10):1160–1167 10.1038/ng.2745 PubMed DOI PMC
Bonifaz-Peña V, Contreras AV, Struchiner CJ, Roela RA, Furuya-Mazzotti TK, Chammas R, et al. Exploring the distribution of genetic markers of pharmacogenomics relevance in Brazilian and Mexican populations. PLoS One. 2014;9(11):e112640 10.1371/journal.pone.0112640 PubMed DOI PMC
Jittikoon J, Mahasirimongkol S, Charoenyingwattana A, Chaikledkaew U, Tragulpiankit P, Mangmool S, et al. Comparison of genetic variation in drug ADME-related genes in Thais with Caucasian, African and Asian HapMap populations. J Hum Genet. 2016;61(2):119–127. 10.1038/jhg.2015.115 PubMed DOI
Maisano Delser P, Fuselli S. Human loci involved in drug biotransformation: worldwide genetic variation, population structure, and pharmacogenetic implications. Hum Genet. 2013;132(5):563–577. 10.1007/s00439-013-1268-5 PubMed DOI
Ramos E, Doumatey A, Elkahloun AG, Shriner D, Huang H, Chen G, et al. Pharmacogenomics, ancestry and clinical decision making for global populations. Pharmacogenomics J. 2014;14(3):217–222. 10.1038/tpj.2013.24 PubMed DOI
Chen J, Teo YY, Toh DS, Sung C. Interethnic comparisons of important pharmacology genes using SNP databases: potential application to drug regulatory assessments. Pharmacogenomics. 2010;11(8):1077–1094. 10.2217/pgs.10.79 PubMed DOI
Jackson JN, Long KM, He Y, Motsinger-Reif AA, McLeod HL, Jack J. A comparison of DMET Plus microarray and genome-wide technologies by assessing population substructure. Pharmacogenetics Genomics. 2016; in press. PubMed PMC
Snyder SR, Mitropoulou C, Patrinos GP, Williams MS. Economic evaluation of pharmacogenomics: a value-based approach to pragmatic decision making in the face of complexity. Public Health Genomics. 2014;17(5–6):256–264 10.1159/000366177 PubMed DOI
Potamias G, Lakiotaki K, Katsila T, Lee MT, Topouzis S, Cooper DN, et al. Deciphering next-generation pharmacogenomics: An information technology perspective. Open Biol. 2014;4(7). pii:140071. PubMed PMC
Kampourakis K, Vayena E, Mitropoulou C, Borg J, van Schaik RH, Cooper DN, et al. Key challenges for next generation pharmacogenomics. EMBO Rep 2014;15(5):472–476. PubMed PMC
Mitropoulou C, Mai Y, van Schaik RH, Vozikis A, Patrinos GP. Documentation and analysis of the policy environment and key stakeholders in pharmacogenomics and genomic medicine in Greece. Public Health Genomics 2014;17(5–6):280–286. PubMed
Mizzi C, Peters B, Mitropoulou C, Mitropoulos K, Katsila T, Agarwal MR, et al. Personalized pharmacogenomics profiling using whole-genome sequencing. Pharmacogenomics. 2014;15(9):1223–1234. 10.2217/pgs.14.102 PubMed DOI
Schildcrout JS, Denny JC, Bowton E, Gregg W, Pulley JM, Basford MA, et al. Optimizing drug outcomes through pharmacogenetics: a case for preemptive genotyping. Clin Pharmacol Ther. 2012;92(2):235–242. 10.1038/clpt.2012.66 PubMed DOI PMC