Chronic intermittent hypoxia affects the cytosolic phospholipase A2α/cyclooxygenase 2 pathway via β2-adrenoceptor-mediated ERK/p38 stimulation
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27686454
DOI
10.1007/s11010-016-2833-8
PII: 10.1007/s11010-016-2833-8
Knihovny.cz E-zdroje
- Klíčová slova
- Cyclooxygenase 2, Heart, Hypoxia, Ischemia/reperfusion, MAPK, Phospholipase A2, β-Adrenoceptor,
- MeSH
- beta-2-adrenergní receptory metabolismus MeSH
- chronická nemoc MeSH
- cyklooxygenasa 2 metabolismus MeSH
- fosfolipasy A2, skupina IV metabolismus MeSH
- ischemická choroba srdeční metabolismus patologie MeSH
- krysa rodu Rattus MeSH
- MAP kinasový signální systém * MeSH
- mitogenem aktivované proteinkinasy p38 metabolismus MeSH
- potkani Wistar MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- beta-2-adrenergní receptory MeSH
- cyklooxygenasa 2 MeSH
- fosfolipasy A2, skupina IV MeSH
- mitogenem aktivované proteinkinasy p38 MeSH
- Ptgs2 protein, rat MeSH Prohlížeč
Cardiac resistance against acute ischemia/reperfusion (I/R) injury can be enhanced by adaptation to chronic intermittent hypoxia (CIH), but the changes at the molecular level associated with this adaptation are still not fully explored. Phospholipase A2 (PLA2) plays an important role in phospholipid metabolism and may contribute to membrane destruction under conditions of energy deprivation during I/R. The aim of this study was to determine the effect of CIH (7000 m, 8 h/day, 5 weeks) on the expression of cytosolic PLA2α (cPLA2α) and its phosphorylated form (p-cPLA2α), as well as other related signaling proteins in the left ventricular myocardium of adult male Wistar rats. Adaptation to CIH increased the total content of cPLA2α by 14 % in myocardial homogenate, and enhanced the association of p-cPLA2α with the nuclear membrane by 85 %. The total number of β-adrenoceptors (β-ARs) did not change but the β2/β1 ratio markedly increased due to the elevation of β2-ARs and drop in β1-ARs. In parallel, the amount of adenylyl cyclase decreased by 49 % and Giα proteins increased by about 50 %. Besides that, cyclooxygenase 2 (COX-2) and prostaglandin E2 (PGE2) increased by 36 and 84 %, respectively. In parallel, we detected increased phosphorylation of protein kinase Cα, ERK1/2 and p38 (by 12, 48 and 19 %, respectively). These data suggest that adaptive changes induced in the myocardium by CIH may include activation of cPLA2α and COX-2 via β2-AR/Gi-mediated stimulation of the ERK/p38 pathway.
Department of Physiology Faculty of Science Charles University Prague Prague Czech Republic
Institute of Physiology Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
J Lipid Res. 2007 Apr;48(4):782-93 PubMed
J Pharmacol Exp Ther. 2012 Nov;343(2):468-78 PubMed
Physiol Res. 2015 ;64(2):191-201 PubMed
Pflugers Arch. 2013 Oct;465(10):1477-86 PubMed
Am J Physiol Heart Circ Physiol. 2007 Jan;292(1):H224-30 PubMed
Am J Physiol Cell Physiol. 2000 Nov;279(5):C1455-63 PubMed
J Biol Chem. 2001 Oct 26;276(43):39539-48 PubMed
Circ Res. 2000 Dec 8;87(12 ):1172-9 PubMed
J Biol Chem. 1996 Nov 22;271(47):30149-57 PubMed
J Biol Chem. 1997 Jan 3;272(1):601-8 PubMed
J Biol Chem. 2005 May 13;280(19):18881-90 PubMed
Biochem Biophys Res Commun. 1997 Oct 29;239(3):840-4 PubMed
J Appl Physiol (1985). 2003 Jun;94(6):2423-32 PubMed
Clin Transl Sci. 2011 Aug;4(4):236-42 PubMed
Circulation. 2002 Jul 9;106(2):239-45 PubMed
J Cell Biochem. 2001;82(2):215-24 PubMed
J Mol Cell Cardiol. 1999 Apr;31(4):761-72 PubMed
FEBS J. 2005 Mar;272(5):1278-90 PubMed
Gen Physiol Biophys. 2016 Apr;35(2):165-73 PubMed
Pharmacol Rep. 2015 Oct;67(5):1041-7 PubMed
Pharmacol Res. 2006 Oct;54(4):303-10 PubMed
Prostaglandins Leukot Essent Fatty Acids. 2007 Jul;77(1):37-43 PubMed
J Surg Res. 2006 Oct;135(2):380-4 PubMed
Mol Cell Biochem. 2010 Dec;345(1-2):271-82 PubMed
Prostaglandins Other Lipid Mediat. 2005 Dec;78(1-4):55-66 PubMed
Cell. 1991 Jun 14;65(6):1043-51 PubMed
J Lipid Res. 2009 Apr;50 Suppl:S237-42 PubMed
Differentiation. 2008 May;76(5):546-57 PubMed
Acta Physiol (Oxf). 2015 May;214(1):97-108 PubMed
Nature. 1997 Nov 6;390(6655):88-91 PubMed
J Biol Chem. 1998 Apr 17;273(16):9886-93 PubMed
Gen Physiol Biophys. 2006 Mar;25(1):25-41 PubMed
J Mol Cell Cardiol. 1999 Oct;31(10 ):1821-31 PubMed
Neurosci Lett. 1997 Sep 19;233(2-3):97-100 PubMed
Circ Res. 2000 Oct 13;87(8):705-9 PubMed
Biochemistry. 2005 Apr 5;44(13):5246-57 PubMed
Biochem Biophys Res Commun. 2004 Aug 27;321(3):657-64 PubMed
Nat Methods. 2012 Jun 28;9(7):676-82 PubMed
Am J Physiol Regul Integr Comp Physiol. 2001 Jan;280(1):R274-81 PubMed
Mol Cell Biochem. 2007 Mar;297(1-2):111-20 PubMed
J Appl Physiol (1985). 2015 Dec 15;119(12 ):1487-93 PubMed
Cardiovasc Res. 2002 Aug 15;55(3):567-75 PubMed
FASEB J. 2005 Jun;19(8):983-5 PubMed
Am J Physiol. 1995 Dec;269(6 Pt 2):H1865-73 PubMed
Physiol Res. 2004;53 Suppl 1:S141-52 PubMed
Cardiovasc Res. 2001 Apr;50(1):65-74 PubMed
Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):9986-90 PubMed
J Biol Chem. 1996 Nov 1;271(44):27723-9 PubMed
Cardiovasc Res. 2002 Aug 15;55(3):506-19 PubMed
Mol Pharmacol. 2003 Nov;64(5):1117-25 PubMed
Basic Res Cardiol. 2006 Jul;101(4):336-45 PubMed
Br J Pharmacol. 2011 Oct;164(3):894-912 PubMed
J Physiol Sci. 2013 May;63(3):211-8 PubMed
Trends Endocrinol Metab. 1996 Mar;7(2):43-50 PubMed
J Pharmacol Exp Ther. 2000 Sep;294(3):793-9 PubMed
Biochem Pharmacol. 2004 Jan 1;67(1):129-34 PubMed
J Biol Chem. 1998 Mar 27;273(13):7228-34 PubMed
Cell. 1993 Jan 29;72 (2):269-78 PubMed
Cardiovasc Res. 1995 Oct;30(4):518-29 PubMed
The involvement of protein kinases in the cardioprotective effect of chronic hypoxia