Population structure and dispersal routes of an invasive parasite, Fascioloides magna, in North America and Europe
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27737705
PubMed Central
PMC5064932
DOI
10.1186/s13071-016-1811-z
PII: 10.1186/s13071-016-1811-z
Knihovny.cz E-zdroje
- Klíčová slova
- Fascioloides magna *, Genetic interrelationships *, Giant liver fluke *, Microsatellites *, Migratory routes *, Parasite *,
- MeSH
- celosvětové zdraví MeSH
- Fasciolidae klasifikace genetika izolace a purifikace MeSH
- genotypizační techniky MeSH
- infekce červy třídy Trematoda epidemiologie přenos MeSH
- mikrosatelitní repetice MeSH
- vysoká zvěř * MeSH
- zoonózy epidemiologie parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa epidemiologie MeSH
- Severní Amerika epidemiologie MeSH
BACKGROUND: Fascioloides magna (Trematoda: Fasciolidae) is an important liver parasite of a wide range of free-living and domestic ruminants; it represents a remarkable species due to its large spatial distribution, invasive character, and potential to colonize new territories. The present study provides patterns of population genetic structure and admixture in F. magna across all enzootic regions in North America and natural foci in Europe, and infers migratory routes of the parasite on both continents. METHODS: In total, 432 individuals from five North American enzootic regions and three European foci were analysed by 11 microsatellite loci. Genetic data were evaluated by several statistical approaches: (i) the population genetic structure of F. magna was inferred using program STRUCTURE; (ii) the genetic interrelationships between populations were analysed by PRINCIPAL COORDINATES ANALYSIS; and (iii) historical dispersal routes in North America and recent invasion routes in Europe were explored using MIGRATE. RESULTS: The analysis of dispersal routes of the parasite in North America revealed west-east and south-north lineages that partially overlapped in the central part of the continent, where different host populations historically met. The exact origin of European populations of F. magna and their potential translocation routes were determined. Flukes from the first European focus, Italy, were related to F. magna from northern Pacific coast, while parasites from the Czech focus originated from south-eastern USA, particularly South Carolina. The Danube floodplain forests (third and still expanding focus) did not display relationship with any North American population; instead the Czech origin of the Danube population was indicated. A serial dilution of genetic diversity along the dispersion route across central and eastern Europe was observed. The results of microsatellite analyses were compared to previously acquired outputs from mitochondrial haplotype data and correlated with past human-directed translocations and natural migration of the final cervid hosts of F. magna. CONCLUSIONS: The present study revealed a complex picture of the population genetic structure and interrelationships of North American and European populations, global distribution and migratory routes of F. magna and an origin of European foci.
Geneton Ltd Ilkovičova 3 841 04 Bratislava Slovakia
Institute of Parasitology Slovak Academy of Sciences Hlinkova 3 040 01 Košice Slovakia
Zobrazit více v PubMed
Kajita Y, O’Neill EM, Zheng Y, Obrycki JJ, Weisrock DW. A population genetic signature of human releases in an invasive ladybeetle. Mol Ecol. 2012;21:5473–83. doi: 10.1111/mec.12059. PubMed DOI
Helmus MR, Mahler DL, Losos JB. Island biogeography of the Anthropocene. Nature. 2014;513:543–6. doi: 10.1038/nature13739. PubMed DOI
Pimentel D, Lach L, Zuniga R, Morrison D. Environmental and economic costs of nonindigenous species in the United States. Bioscience. 2000;50:53–65.
Williamson M. Invasions. Ecography. 1999;22:5–12. doi: 10.1111/j.1600-0587.1999.tb00449.x. DOI
Lodge DM. Biological invasions: lessons for ecology. Trends Ecol Evol. 1993;8:133–7. doi: 10.1016/0169-5347(93)90025-K. PubMed DOI
Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl. 2000;10:689–710. doi: 10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2. DOI
Jeschke JM, Strayer DL. Invasion success of vertebrates in Europe and North America. Proc Natl Acad Sci USA. 2005;102:7198–202. PubMed PMC
Bryan MB, Zalinski D, Filcek KB, Libants S, Li W, Scribner KT. Patterns of invasion and colonization of the sea lamprey (Petromyzon marinus) in North America as revealed by microsatellite genotypes. Mol Ecol. 2005;14:3757–73. doi: 10.1111/j.1365-294X.2005.02716.x. PubMed DOI
Pybus MJ. Endoparasites. In: Samuel WM, Pybus MJ, Kocan AA, editors. Parasitic Diseases of Wild Mammals, II. Ames: Iowa State University Press; 2001. pp. 121–49.
Bazsalovicsová E, Králová-Hromadová I, Štefka J, Minárik G, Bokorová S, Pybus M. Genetic interrelationships of North American populations of giant liver fluke Fascioloides magna. Parasit Vectors. 2015;8:288. doi: 10.1186/s13071-015-0895-1. PubMed DOI PMC
Králová-Hromadová I, Bazsalovicsová E, Štefka J, Špakulová M, Vávrová S, Szemes T, et al. Multiple origins of European populations of the giant liver fluke Fascioloides magna (Trematoda: Fasciolidae), a liver parasite of ruminants. Int J Parasitol. 2011;41:373–83. doi: 10.1016/j.ijpara.2010.10.010. PubMed DOI
Králová-Hromadová I, Bazsalovicsová E, Demiaszkiewicz A. Molecular characterization of Fascioloides magna (Trematoda: Fascioloidae) from south-western Poland based on mitochondrial markers. Acta Parasitol. 2015;60:544–7. doi: 10.1515/ap-2015-0077. PubMed DOI
Apostolo C. The naturalistic aspects: flora, fauna and the environment. In: Lupo M, Paglieri M, Apostolo C, Vaccarino E, Debernardi M, editors. La Mandria Storia e natura del Parco. Torino, Italy: Edizioni Eda; 1996. pp. 67–98.
Ullrich K. Über das Vorkommen von seltenen oder wenig bekannten Parasiten der Säugetiere und Vögel in Böhmen und Mähren. Prag Arch Tiermed. 1930;10:19–43.
Pyziel AM, Demianszkiewicz AW, Kuligowska I. Molecular identification of Fascioloides magna (Bassi, 1875) from red deer from south-western Poland (Lower Silesian Wilderness) on the basis of internal transcribed spacer 2 (ITS-2) Pol J Vet Sci. 2014;17:523–5. PubMed
Galtier N, Nabholz B, Glémin S, Hurst GDD. Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol Ecol. 2009;18:4541–50. doi: 10.1111/j.1365-294X.2009.04380.x. PubMed DOI
Godinho R, Crespo EG, Ferrand N. The limits of mtDNA phylogeography: complex patterns of population history in a highly structured Iberian lizard are only revealed by the use of nuclear markers. Mol Ecol. 2008;17:4670–83. doi: 10.1111/j.1365-294X.2008.03929.x. PubMed DOI
DeBoer TS, Naguit MR, Erdmann MV, Ablan-Lagman MCA, Ambariyanto, Carpenter KE, et al. Concordant phylogenetic patterns inferred from mitochondrial and microsatellite DNA in the giant clam Tridacna crocea. Bull Mar Sci. 2014;90:301–29. doi: 10.5343/bms.2013.1002. DOI
Minárik G, Bazsalovicsová E, Zvijáková Ľ, Štefka J, Pálková L, Králová-Hromadová I. Development and characterization of multiplex panels of polymorphic microsatellite loci in giant liver fluke Fascioloides magna (Trematoda: Fasciolidae), using next-generation sequencing approach. Mol Biochem Parasit. 2014;195:30–3. doi: 10.1016/j.molbiopara.2014.06.003. PubMed DOI
Králová-Hromadová I, Špakulová M, Horáčková E, Turčeková L, Novobilský A, Beck R, et al. Sequence analysis of ribosomal and mitochondrial genes of the giant liver fluke Fascioloides magna (Trematoda: Fasciolidae): intraspecific variation and differentiation from Fasciola hepatica. J Parasitol. 2008;94:58–67. doi: 10.1645/GE-1324.1. PubMed DOI
Peakall R, Smouse PE. GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes. 2006;6:288–95. doi: 10.1111/j.1471-8286.2005.01155.x. PubMed DOI PMC
Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research - an update. Bioinformatics. 2012;28:2537–9. doi: 10.1093/bioinformatics/bts460. PubMed DOI PMC
Raymond M, Rousset F. GENEPOP (Version 1.2): Population genetics software for exact tests and ecumenicism. J Hered. 1995;86:248–9.
Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984;38:1358–70. doi: 10.2307/2408641. PubMed DOI
van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes. 2004;4:535–8. doi: 10.1111/j.1471-8286.2004.00684.x. DOI
Cornuet JM, Luikart G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics. 1996;144:2001–14. PubMed PMC
Luikart G, Cornuet JM. Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol. 1998;12:228–37. doi: 10.1046/j.1523-1739.1998.96388.x. DOI
Piry S, Luikart G, Cornuet JM. BOTTLENECK: a computer program for detecting recent reductions in effective population size using allele frequency data. J Hered. 1999;90:502–3. doi: 10.1093/jhered/90.4.502. DOI
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59. PubMed PMC
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14:2611–20. doi: 10.1111/j.1365-294X.2005.02553.x. PubMed DOI
Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics. 2003;164:1567–87. PubMed PMC
Earl DA, vonHoldt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour. 2012;4:359–61. doi: 10.1007/s12686-011-9548-7. DOI
Huff DR, Peakall R, Smouse PE. RAPD variation within and among natural populations of outcrossing buffalograss [Buchloë dactyloides (Nutt.) Engelm.] Theor Appl Genet. 1993;86:927–34. doi: 10.1007/BF00211043. PubMed DOI
Saitou N, Nei M. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25. PubMed
Kass RE, Raftery AE. Bayes Factors. J Am Stat Assoc. 1995;90:773–95. doi: 10.1080/01621459.1995.10476572. DOI
Beerli P. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics. 2006;22:341–5. doi: 10.1093/bioinformatics/bti803. PubMed DOI
Beerli P, Palczewski M. Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics. 2010;185:313–26. doi: 10.1534/genetics.109.112532. PubMed DOI PMC
Latch EK, Heffelfinger JR, Fike JA, Rhodes OE. Species-wide phylogeography of North American mule deer (Odocoileus hemionus): Cryptic glacial refugia and postglacial recolonization. Mol Ecol. 2009;18:1730–45. doi: 10.1111/j.1365-294X.2009.04153.x. PubMed DOI
Klütsch CFC, Manseau M, Wilson PJ. Phylogeographical analysis of mtDNA data indicates postglacial expansion from multiple glacial refugia in woodland caribou (Rangifer tarandus caribou) PLoS One. 2012;7:e52661. doi: 10.1371/journal.pone.0052661. PubMed DOI PMC
Bouzid W, Štefka J, Bahri-Sfar L, Beerli P, Loot G, Lek S, et al. Pathways of cryptic invasion in a fish parasite traced using coalescent analysis and epidemiological survey. Biol Invasions. 2013;15:1907–23. doi: 10.1007/s10530-013-0418-y. DOI
Peery MZ, Kirby R, Reid BN, Stoelting R, Doucet-Bëer E, Robinson S, et al. Reliability of genetic bottleneck tests for detecting recent population declines. Mol Ecol. 2012;21:3403–18. doi: 10.1111/j.1365-294X.2012.05635.x. PubMed DOI
Pybus MJ, Butterworth EW, Woods JG. An expanding population of the giant liver fluke (Fascioloides magna) in elk (Cervus canadensis) and other ungulates in Canada. J Wildl Dis. 2015;51:431–45. doi: 10.7589/2014-09-235. PubMed DOI
Roth JA, Laerm J. A late Pleistocene vertebrate assemblage from Edisto Island, South Carolina. Brimleyana. 1980;3:1–29.
Noble RE. Mississippi deer herd: past and present. Mississippi Game Fish. 1966;29:14–5.
Ellsworth DL, Honeycutt RL, Silvy NJ, Bickham JW, Klimstra WD. Historical biogeography and contemporary patterns of mitochondrial DNA variation in white-tailed deer from the Southeastern United States. Evolution. 1994;48:122–36. doi: 10.2307/2410008. PubMed DOI
VerCauteren K. The deer boom: discussions on population growth and range expansion of the white-tailed deer. USDA National Wildlife Research Center – Staff publications; 2003. Paper 281:15–20.
O’Gara BW. Taxonomy. In: Toweill DE, Thomas JW, editors. North American elk: ecology and management. Washington, DC: Smithsonian Institution Press; 2002. pp. 3–66.
Kingscote AA. Liver rot (Fascioloidiasis) in ruminants. Can J Comp Med. 1950;14:203–8. PubMed PMC
Heinselman ML. Fire in the virgin forests of the Boundary Waters Canoe Area, Minnesota. Quaternary Res. 1973;3:329–82. doi: 10.1016/0033-5894(73)90003-3. DOI
Allendorf FW, Lundquist LL. Introduction: population biology, evolution, and control of invasive species. Conserv Biol. 2003;17:24–30. doi: 10.1046/j.1523-1739.2003.02365.x. DOI
Rollins LA, Richardson MF, Shine R. A genetic perspective on rapid evolution in cane toads (Rhinella marina) Mol Ecol. 2015;24:2264–76. doi: 10.1111/mec.13184. PubMed DOI
Králová-Hromadová I, Juhásová L, Bazsalovicsová E. Springer Briefs in Animal Sciences. Switzerland: Springer International Publishing; 2016. Giant liver fluke, Fascioloides magna: past, present and future research; p. 106.
Dlugosch KM, Anderson SR, Braasch J, Cang FA, Gillette HD. The devil is in the details: genetic variation in introduced populations and its contributions to invasion. Mol Ecol. 2015;24:2095–111. doi: 10.1111/mec.13183. PubMed DOI
Mitta G, Adema CM, Gourbal B, Loker ES, Theron A. Compatibility polymorphism in snail/schistosome interactions: From field to theory to molecular mechanisms. Dev Comp Immunol. 2012;37:1–8. doi: 10.1016/j.dci.2011.09.002. PubMed DOI PMC
Karamon J, Larska M, Jasik A, Sell B. First report of the giant liver fluke (Fascioloides magna) infection in farmed fallow deer (Dama dama) in Poland – pathomorphological changes and molecular identification. Bull Vet Inst Pulawy. 2015;59:339–44.
Juhásová Ľ, Bazsalovicsová E, Králová-Hromadová I, Karamon J. A genetic structure of novel population of Fascioloides magna from Poland, Podkarpackie Province, indicates an expanding second European natural focus of fascioloidosis. Acta Parasitol. 2016;61:790–5. PubMed
Rehbein S, Hamel D, Reindl H, Visser M, Pfister K. Fascioloides magna and Ashworthius sidemi – two new parasites in wild ungulates in Germany. In: Program & Abstracts of European Multicolloquium of Parasitology XI. Cluj-Napoca, Romania. 2012. p. 565.
Molecular uncovering of important helminth species in wild ruminants in the Czech Republic
Dryad
10.5061/dryad.nt57p