Revisiting Recombination Signal in the Tick-Borne Encephalitis Virus: A Simulation Approach
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27760182
PubMed Central
PMC5070875
DOI
10.1371/journal.pone.0164435
PII: PONE-D-16-22095
Knihovny.cz E-zdroje
- MeSH
- fylogeneze MeSH
- molekulární evoluce MeSH
- rekombinace genetická * MeSH
- virové vakcíny imunologie MeSH
- viry klíšťové encefalitidy genetika imunologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- virové vakcíny MeSH
The hypothesis of wide spread reticulate evolution in Tick-Borne Encephalitis virus (TBEV) has recently gained momentum with several publications describing past recombination events involving various TBEV clades. Despite a large body of work, no consensus has yet emerged on TBEV evolutionary dynamics. Understanding the occurrence and frequency of recombination in TBEV bears significant impact on epidemiology, evolution, and vaccination with live vaccines. In this study, we investigated the possibility of detecting recombination events in TBEV by simulating recombinations at several locations on the virus' phylogenetic tree and for different lengths of recombining fragments. We derived estimations of rates of true and false positive for the detection of past recombination events for seven recombination detection algorithms. Our analytical framework can be applied to any investigation dealing with the difficult task of distinguishing genuine recombination signal from background noise. Our results suggest that the problem of false positives associated with low detection P-values in TBEV, is more insidious than generally acknowledged. We reappraised the recombination signals present in the empirical data, and showed that reliable signals could only be obtained in a few cases when highly genetically divergent strains were involved, whereas false positives were common among genetically similar strains. We thus conclude that recombination among wild-type TBEV strains may occur, which has potential implications for vaccination with live vaccines, but that these events are surprisingly rare.
Department of Clinical Microbiology Sahlgrenska University Gothenburg Sweden
School of Medical Sciences Örebro University Örebro Sweden
School of Natural Science Technology and Environmental Studies Södertörn University Huddinge Sweden
Science and Historical Investigations of Evolution Laboratory of Dubá Dubá Czech Rep
Zobrazit více v PubMed
Chambers TJ, Hahn CS, Galler R, Rice CM. Flavivirus genome organization, expression, and replication. Annual Review of Microbiology. 1990;44: 649–688. 10.1146/annurev.mi.44.100190.003245 PubMed DOI
Grard G, Moureau G, Charrel RN, Lemasson J-J, Gonzalez J-P, Gallian P et al. Genetic characterization of tick-borne flaviviruses: New insights into evolution, pathogenetic determinants and taxonomy. Virology. 2007;361: 80–92. 10.1016/j.virol.2006.09.015 PubMed DOI
Gritsun TS, Lashkevich VA, Gould EA. Tick-borne encephalitis. Antiviral Research. 2003;57: 129–146. PubMed
Ecker M, Allison SL, Meixner T, Heinz FX. Sequence analysis and genetic classification of tick-borne encephalitis viruses from Europe and Asia. Journal of General Virology. 1999;80: 179–185. 10.1099/0022-1317-80-1-179 PubMed DOI
Marin MS, McKenzie J, Gao GF, Reid HW, Antoniadis A, Gould EA. The virus causing encephalomyelitis in sheep in Spain: a new member of the tick-borne encephalitis group. Research in Veterinary Science. 1995;58: 11–13. PubMed
Bertrand Y, Töpel M, Elväng A, Melik W, Johansson M. First dating of a recombination event in mammalian tick-borne flaviviruses. PLoS ONE. 2012; 7: e31981 10.1371/journal.pone.0031981 PubMed DOI PMC
Gao GF, Zanotto PMdA, Holmes EC, Reid HW, Gould EA. Molecular variation, evolution and geographical distribution of louping ill virus. Acta Virologica. 1997;41: 259–268. PubMed
McGuire K, Holmes EC, Gao GF, Reid HW, Gould EA. Tracing the origins of louping ill virus by molecular phylogenetic analysis. Journal of General Virology. 1998;79: 981–988. 10.1099/0022-1317-79-5-981 PubMed DOI
Norberg P, Roth A, Bergström T. Genetic recombination of tick-borne flaviviruses among wild-type strains. Virology. 2013;440: 105–116. 10.1016/j.virol.2013.02.017 PubMed DOI
Zanotto PMdA, Gao GF, Gritsun T, Marin MS, Jiang WR, Venugopal K et al. An arbovirus cline across the morthern hemisphere. Virology. 1995;210: 152–159. PubMed
Felsenstein J, Yokoyama S. The evolutionary advantage of recombination. II. Individual selection for recombination. Genetics. 1976;83(4): 845–859. PubMed PMC
Edwards AWF. The fundamental theorem of natural selection. Biological Reviews. 1994;69: 443–474. PubMed
Fisher RA The genetical theory of natural selection. 1930; Oxford, UK: Oxford Univ. Press
Keightley PD, Otto SP. Interference among deleterious mutations favours sex and recombination in finite populations. Nature. 2006;443: 89–92. 10.1038/nature05049 PubMed DOI
AbuBakar S, Wong P-F, Chan Y-F. Emergence of dengue virus type 4 genotype IIA in Malaysia. Journal of General Virology. 2002;283: 2437–2442. PubMed
Craig S, Thu HM, Lowry K, Wang X-f, Holmes EC, Aaskov J. Diverse dengue type 2 virus populations contain recombinant and both parental viruses in a single mosquito host. Journal of Virology. 2003;77: 4463–4467. 10.1128/JVI.77.7.4463-4467.2003 PubMed DOI PMC
Aaskov J, Buzacott K, Field E, Lowry K, Berlioz-Arthaud A, Holmes EC. Multiple recombinant dengue type 1 viruses in an isolate from a dengue patient. Journal of General Virology. 2007;88: 3334–3340. 10.1099/vir.0.83122-0 PubMed DOI PMC
Goncalvez AP, Escalante AA, Pujol FH, Ludert JE, Tovar D, Salas RA et al. Diversity and evolution of the envelope gene of dengue virus type 1. Virology. 2002;303: 110–119. PubMed
Gould EA, Moss SR, Turner SL. Evolution and dispersal of encephalitic flaviviruses. Archives of Virology. Supplementa. 2004;18: 65–84. PubMed
Twiddy SS, Holmes EC. The extent of homologous recombination in members of the genus Flavivirus. Journal of General Virology. 2003;84: 429–440. 10.1099/vir.0.18660-0 PubMed DOI
Baillie GJ, Kolokotronis S-O, Waltari E, Maffei JG, Kramer LD, Perkins SL. Phylogenetic and evolutionary analyses of St. Louis encephalitis virus genomes. Molecular Phylogenetics and Evolution. 2008;47: 717–728. 10.1016/j.ympev.2008.02.015 PubMed DOI
May FJ, Li L, Zhang S, Guzman H, Beasley DWC, Tesh RB et al. Genetic variation of St. Louis encephalitis virus. The Journal of General Virology. 2008;89: 1901–1910. 10.1099/vir.0.2008/000190-0 PubMed DOI PMC
Pickett BE, Lefkowitz EJ. Recombination in West Nile Virus: minimal contribution to genomic diversity. Virology Journal. 2009;6: 165 10.1186/1743-422X-6-165 PubMed DOI PMC
Yun SM, Kim SY, Ju YR, Han MG, Jeong YE, Ryou J. First complete genomic characterization of two tick-borne encephalitis virus isolates obtained from wild rodents in South Korea. Virus Genes. 2011;42: 307–316. 10.1007/s11262-011-0575-y PubMed DOI
Uzcátegui NY, Sironen T, Golovljova I, Jääskeläinen AE, Välimaa H, Lundkvist A, et al. Rate of evolution and molecular epidemiology of tick-borne encephalitis virus in Europe, including two isolations from the same focus 44 years apart. Journal of General Virology. 2012; 9: 786–796. PubMed
Fajs L, Durmiši E, Knap N, Strle F, Avšic-Županc T. Phylogeographic characterization of tick-borne encephalitis virus from patients, rodents and ticks in Slovenia. PLoS ONE. 2012;7: e48420 10.1371/journal.pone.0048420 PubMed DOI PMC
Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P. RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics. 2010;26: 2462–2463. 10.1093/bioinformatics/btq467 PubMed DOI PMC
Martin DP, Williamson C, Posada D. RDP2: recombination detection and analysis from sequence alignments. Bioinformatics. 2005;21: 260–262. 10.1093/bioinformatics/bth490 PubMed DOI
Weidmann M, Frey S, Freire CC, Essbauer S, Ružek D, Klempa B et al. Molecular phylogeography of tick-borne encephalitis virus in central Europe. Journal of General Virology. 2013;94: 2129–2139. 10.1099/vir.0.054478-0 PubMed DOI
Weidmann M, Ruzek D, Krivanec K, Zöller G, Essbauer S, Pfeffer M et al. Relation of genetic phylogeny and geographical distance of tick-borne encephalitis virus in central Europe. Journal of General Virology. 2011;92: 1906–1916. 10.1099/vir.0.032417-0 PubMed DOI
Heinze DM, Gould EA, Forrester NL. Revisiting the clinal concept of evolution and dispersal for the tick-borne flaviviruses by using phylogenetic and biogeographic analyses. Journal of Virology. 2012;86: 8663–8671. 10.1128/JVI.01013-12 PubMed DOI PMC
Zanotto PMdA, Gould EA, Gao GF, Harvey PH, Holmes EC. Population dynamics of flaviviruses revealed by molecular phylogenies. Proceedings of the National Academy of Sciences of the United States of America. 1996;93: 548–553. PubMed PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution. 2013;30: 772–780. 10.1093/molbev/mst010 PubMed DOI PMC
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 1999;41: 95–98.
Boni MF, Posada D, Feldman MW. An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics. 2007;176: 1035–1047. 10.1534/genetics.106.068874 PubMed DOI PMC
Martin D, Rybicki E. RDP: detection of recombination amongst aligned sequences. Bioinformatics. 2000;16: 562–563. PubMed
Padidam M, Sawyer S, Fauquet CM. Possible emergence of new geminiviruses by frequent recombination. Virology. 1999;265: 218–225. 10.1006/viro.1999.0056 PubMed DOI
Maynard Smith J. Analyzing the mosaic structure of genes. Journal of Molecular Evolution. 1992;34: 126–129. PubMed
Gibbs MJ, Armstrong JS, Gibbs AJ. Sister-Scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics. 2000;16: 573–582. PubMed
Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution. 2012;29: 1969–1973. 10.1093/molbev/mss075 PubMed DOI PMC
Posada D, Crandall KA. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14: 817–818. PubMed
Baele G, Lemey P. Bayesian evolutionary model testing in the phylogenomics era: matching model complexity with computational efficiency. Bioinformatics. 2013;29: 1970–1979. 10.1093/bioinformatics/btt340 PubMed DOI
Rambaut A, Drummond AJ. Tracer v1.4, Available from http://beast.bio.ed.ac.uk/Tracer 2007.
Ashkenazy H, Penn O, Doron-Faigenboim A, Cohen O, Cannarozzi G, Zomer O et al. FastML: a web server for probabilistic reconstruction of ancestral sequences. Nucleic Acids Research. 2012;40: W580–W584. 10.1093/nar/gks498 PubMed DOI PMC
Rambaut A, Grass NC. Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Computer applications in the biosciences: CABIOS. 1997;13: 235–238. PubMed
Price MN, Dehal PS, Arkin AP. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5: e9490 10.1371/journal.pone.0009490 PubMed DOI PMC
Shimodaira H, Hasegawa M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution. 1999;16: 1114–1116.
Robinson DF, Foulds LR. Comparison of phylogenetic trees. Mathematical Biosciences. 1981;53: 131–147.
Stamatakis A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22: 2688–2690. 10.1093/bioinformatics/btl446 PubMed DOI
Sukumaran J, Holder MT. DendroPy: a Python library for phylogenetic computing. Bioinformatics. 2010;26: 1569–1571. 10.1093/bioinformatics/btq228 PubMed DOI
Huerta-Cepas J, Dopazo J, Gabaldon T. ETE: a python environment for tree exploration. BMC Bioinformatics. 2010;11: 24 10.1186/1471-2105-11-24 PubMed DOI PMC
Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009;25: 1422–1423. 10.1093/bioinformatics/btp163 PubMed DOI PMC
Kovalev SY, Chernykh DN, Kokorev VS, Snitkovskaya TE, Romanenko VV. Origin and distribution of tick-borne encephalitis virus strains of the Siberian subtype in the Middle Urals, the north-west of Russia and the Baltic countries. Journal of General Virology. 2009;90: 2884–2892. 10.1099/vir.0.012419-0 PubMed DOI
Golovljova I, Vene S, Sjölander KB, Vasilenko V, Plyusnin A, Lundkvist A. Characterization of tick-borne encephalitis virus from Estonia. Journal of Medical Virology. 2004;74: 580–588. 10.1002/jmv.20224 PubMed DOI
Posada D, Crandall KA. Evaluation of methods for detecting recombination from DNA sequences: Computer simulations. Proceedings of the National Academy of Sciences of the United States of America. 2001;98:13757–13762. 10.1073/pnas.241370698 PubMed DOI PMC
Chan C, Beiko R, Ragan M. Detecting recombination in evolving nucleotide sequences. BMC Bioinformatics. 2006;7:412 10.1186/1471-2105-7-412 PubMed DOI PMC
Farris JS. The retention index and the rescaled consistency index. Cladisitics. 1989;5: 417–419. PubMed