De novo transcriptome assembly facilitates characterisation of fast-evolving gene families, MHC class I in the bank vole (Myodes glareolus)

. 2017 Apr ; 118 (4) : 348-357. [epub] 20161026

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27782121

The major histocompatibility complex (MHC) plays a central role in the adaptive immune response and is the most polymorphic gene family in vertebrates. Although high-throughput sequencing has increasingly been used for genotyping families of co-amplifying MHC genes, its potential to facilitate early steps in the characterisation of MHC variation in nonmodel organism has not been fully explored. In this study we evaluated the usefulness of de novo transcriptome assembly in characterisation of MHC sequence diversity. We found that although de novo transcriptome assembly of MHC I genes does not reconstruct sequences of individual alleles, it does allow the identification of conserved regions for PCR primer design. Using the newly designed primers, we characterised MHC I sequences in the bank vole. Phylogenetic analysis of the partial MHC I coding sequence (2-4 exons) of the bank vole revealed a lack of orthology to MHC I of other Cricetidae, consistent with the high gene turnover of this region. The diversity of expressed alleles was characterised using ultra-deep sequencing of the third exon that codes for the peptide-binding region of the MHC molecule. High allelic diversity was demonstrated, with 72 alleles found in 29 individuals. Interindividual variation in the number of expressed loci was found, with the number of alleles per individual ranging from 5 to 14. Strong signatures of positive selection were found for 8 amino acid sites, most of which are inferred to bind antigens in human MHC, indicating conservation of structure despite rapid sequence evolution.

Zobrazit více v PubMed

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. (1990). Basic local alignment search tool. J Mol Biol 215: 403–410. PubMed

Apanius V, Penn D, Slev PR, Ruff LR, Potts WK. (1997). The nature of selection on the major histocompatibility complex. Crit Rev Immunol 17: 179–224. PubMed

Axtner J, Sommer S. (2007). Gene duplication, allelic diversity, selection processes and adaptive value of MHC class II DRB genes of the bank vole, Clethrionomys glareolus. Immunogenetics 59: 417–426. PubMed

Babik W. (2010). Methods for MHC genotyping in non-model vertebrates. Mol Ecol Resour 10: 237–251. PubMed

Babik W, Radwan J. (2007). Sequence diversity of MHC class II DRB genes in the bank vole Myodes glareolus. Acta Theriol 52: 227–235.

Babik W, Taberlet P, Ejsmond MJ, Radwan J. (2009). New generation sequencers as a tool for genotyping of highly polymorphic multilocus MHC system. Mol Ecol Resour 9: 713–719. PubMed

Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J et al. (2013). GenBank. Nucleic Acids Res 41: D36–D42. PubMed PMC

Bernatchez L, Landry C. (2003). MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evol Biol 16: 363–377. PubMed

Bragg LM, Stone G, Butler MK, Hugenholtz P, Tyson GW. (2013). Shining a light on dark sequencing: characterising errors in Ion Torrent PGM data. PLoS Comput Biol 9: e1003031. PubMed PMC

Bryja J, Galan M, Charbonnel N, Cosson JF. (2006). Duplication, balancing selection and trans-species evolution explain the high levels of polymorphism of the DQA MHC class II gene in voles (Arvicolinae). Immunogenetics 58: 191–202. PubMed

Crew MD, Bates LM, Douglass CA, York JL. (1996). Expressed Peromyscus maniculatus (Pema) MHC class I genes: evolutionary implications and the identification of a gene encoding a Qa1-like antigen. Immunogenetics 44: 177–185. PubMed

Crew MD, Filipowsky ME, Neshat MS, Smith GS, Walford RL. (1991). Transmembrane domain length variation in the evolution of major histocompatibility complex class I genes. Proc Natl Acad Sci USA 88: 4666–4670. PubMed PMC

Crew MD, Filipowsky ME, Zeiler EC, Smith GS, Walford RL. (1990). Major histocompatibility complex class I genes of Peromyscus leucopus. Immunogenetics 1: 371–379. PubMed

Darriba D, Taboada GL, Doallo R, Posada D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9: 772. PubMed PMC

Deter J, Bryja J, Chaval Y, Galan M, Henttonen H, Laakkonen J et al. (2008). Association between the DQA MHC class II gene and Puumala virus infection in Myodes glareolus, the bank vole. Infect Genet Evol 8: 450–458. PubMed

Ejsmond MJ, Radwan J. (2015). Red Queen processes drive positive selection on major histocompatibility complex (MHC) genes. PLoS Comput Biol 11: e1004627. PubMed PMC

Filipi K, Marková S, Searle JB, Kotlík P. (2015). Mitogenomic phylogenetics of the bank vole Clethrionomys glareolus, a model system for studying end-glacial colonization of Europe. Mol Phylogenet Evol 82 (Pt A): 245–257. PubMed

Gourraud P-A, Khankhanian P, Cereb N, Yang SY, Feolo M, Maiers M et al. (2014). HLA diversity in the 1000 Genomes dataset. PLoS One 9: e97282. PubMed PMC

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson D a, Amit I et al. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29: 644–652. PubMed PMC

Guindon S, Gascuel O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696–704. PubMed

Guivier E, Galan M, Salvador AR, Xuéreb A, Chaval Y, Olsson GE et al. (2010). Tnf-α expression and promoter sequences reflect the balance of tolerance/resistance to Puumala hantavirus infection in European bank vole populations. Infect Genet Evol 10: 1208–1217. PubMed

Hughes AL, Nei M. (1989. a). Evolution of the major histocompatibility complex: independent origin of nonclassical class I genes in different groups of mammals. Mol Biol Evol 6: 559–579. PubMed

Hughes AL, Nei M. (1989. b). Nucleotide substitution at major histocompatibility complex class II loci: evidence for overdominant selection. Proc Natl Acad Sci USA 86: 958–962. PubMed PMC

Hurt P, Walter L, Sudbrak R, Klages S, Müller I, Shiina T et al. (2004). The genomic sequence and comparative analysis of the rat major histocompatibility complex. Genome Res 14: 631–639. PubMed PMC

Hutchins AP, Poulain S, Fujii H, Miranda-Saavedra D. (2012). Discovery and characterization of new transcripts from RNA-seq data in mouse CD4(+) T cells. Genomics 100: 303–313. PubMed

Jeffery KJM, Bangham CRM. (2000). Do infectious diseases drive MHC diversity? Microbes Infect 2: 1335–1341. PubMed

Kalendar R, Lee D, Schulman AH. (2014). FastPCR software for PCR, in silico PCR, and oligonucleotide assembly and analysis. Methods Mol Biol 1116: 271–302. PubMed

Katoh K. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30: 3059–3066. PubMed PMC

Katoh K, Standley DM. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30: 772–780. PubMed PMC

Kelley J, Walter L, Trowsdale J. (2005). Comparative genomics of major histocompatibility complexes. Immunogenetics 56: 683–695. PubMed

Klein J. (1986) Natural History of the Major Histocompatibility Complex. Wiley: New York.

Kloch A, Babik W, Bajer A, Siński E, Radwan J. (2010). Effects of an MHC-DRB genotype and allele number on the load of gut parasites in the bank vole Myodes glareolus. Mol Ecol 19 (Suppl 1): 255–265. PubMed

Konczal M, Koteja P, Orlowska-Feuer P, Radwan J, Sadowska ET, Babik W. (2016). Genomic response to selection for predatory behavior in a mammalian model of adaptive radiation. Mol Biol Evol 33: 2429–2440. PubMed

Kotlík P, Marková S, Vojtek L, Stratil A, Slechta V, Hyršl P et al. (2014). Adaptive phylogeography: functional divergence between haemoglobins derived from different glacial refugia in the bank vole. Proc Biol Sci 281: 20140021. PubMed PMC

Kuduk K, Babik W, Bojarska K, Sliwińska EB, Kindberg J, Taberlet P et al. (2012. a). Evolution of major histocompatibility complex class I and class II genes in the brown bear. BMC Evol Biol 12: 197. PubMed PMC

Kuduk K, Johanet A, Allainé D, Cohas A, Radwan J. (2012. b). Contrasting patterns of selection acting on MHC class I and class II DRB genes in the Alpine marmot (Marmota marmota). J Evol Biol 25: 1686–1693. PubMed

Kulski JK, Shiina T, Anzai T, Kohara S, Inoko H. (2002). Comparative genomic analysis of the MHC: the evolution of class I duplication blocks, diversity and complexity from shark to man. Immunol Rev 190: 95–122. PubMed

Langmead B, Salzberg SL. (2012). Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357–359. PubMed PMC

Li B, Fillmore N, Bai Y, Collins M, Thomson JA, Stewart R et al. (2014). Evaluation of de novo transcriptome assemblies from RNA-Seq data. Genome Biol 15: 553. PubMed PMC

Lighten J, van Oosterhout C, Bentzen P. (2014). Critical review of NGS analyses for de novo genotyping multigene families. Mol Ecol 23: 3957–3972. PubMed

Miller M, Kaukinen KH, Angel K, Kaukinen KH, Schulze AD. (2002). Expansion and contraction of major histocompatibility complex genes: a teleostean example. Immunogenetics 53: 941–963. PubMed

Marková S, Filipi K, Searle JB, Kotlík P. (2015). Mapping 3' transcript ends in the bank vole (Clethrionomys glareolus) mitochondrial genome with RNA-Seq. BMC Genomics 16: 870. PubMed PMC

Marková S, Searle JB, Kotlík P. (2014). Relaxed functional constraints on triplicate α-globin gene in the bank vole suggest a different evolutionary history from other rodents. Heredity (Edinb) 113: 64–73. PubMed PMC

McElroy KE, Luciani F, Thomas T. (2012). GemSIM: general, error-model based simulator of next-generation sequencing data. BMC Genomics 13: 74. PubMed PMC

Milne I, Stephen G, Bayer M, Cock PJA, Pritchard L, Cardle L et al. (2013). Using Tablet for visual exploration of second-generation sequencing data. Brief Bioinform 14: 193–202. PubMed

Mokkonen M, Kokko H, Koskela E, Lehtonen J, Mappes T, Martiskainen H et al. (2011). Negative frequency-dependent selection of sexually antagonistic alleles in Myodes glareolus. Science 334: 972–974. PubMed

Rada C, Lorenzi R, Powis SJ, van den Bogaerde J, Parham P, Howard JC. (1990). Concerted evolution of class I genes in the major histocompatibility complex of murine rodents. Proc Natl Acad Sci USA 87: 2167–2171. PubMed PMC

Radwan J, Zagalska-Neubauer M, Cichoń M, Sendecka J, Kulma K, Gustafsson L et al. (2012). MHC diversity, malaria and lifetime reproductive success in collared flycatchers. Mol Ecol 21: 2469–2479. PubMed

Reche PA., Reinherz EL. (2003). Sequence variability analysis of human class I and class II MHC molecules: Functional and structural correlates of amino acid polymorphisms. J Mol Biol 331: 623–641. PubMed

Reusch TBH, Schaschl H, Wegner KM. (2004). Recent duplication and inter-locus gene conversion in major histocompatibility class II genes in a teleost, the three-spined stickleback. Immunogenetics 56: 427–437. PubMed

Rice P, Longden I, Bleasby A. (2000). EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16: 276–277. PubMed

Robinson J, Halliwell JA, McWilliam H, Lopez R, Parham P, Marsh SGE. (2013). The IMGT/HLA database. Nucleic Acids Res 41: D1222–D1227. PubMed PMC

Rubocki RJ, Lee DR, Lie WR, Myers NB, Hansen TH. (1990). Molecular evidence that the H-2D and H-2L genes arose by duplication. Differences between the evolution of the class I genes in mice and humans. J Exp Med 171: 2043–2061. PubMed PMC

Sadowska ET, Baliga-Klimczyk K, Chrzaścik KM, Koteja P. (2008). Laboratory model of adaptive radiation: a selection experiment in the bank vole. Physiol Biochem Zool 81: 627–640. PubMed

Scherman K, Råberg L, Westerdahl H. (2014). Positive selection on MHC class II DRB and dqb genes in the bank vole (Myodes glareolus). J Mol Evol 78: 293–305. PubMed

Sebastian A, Herdegen M, Migalska M, Radwan J. (2016). amplisas: a web server for multilocus genotyping using next-generation amplicon sequencing data. Mol Ecol Resour 16: 498–510. PubMed

Sommer S, Courtiol A, Mazzoni CJ. (2013). MHC genotyping of non-model organisms using next-generation sequencing: a new methodology to deal with artefacts and allelic dropout. BMC Genomics 14: 542. PubMed PMC

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30: 2725–2729. PubMed PMC

Vaheri A, Henttonen H, Voutilainen L. (2013). Hantavirus infections in Europe and their impact on public health. Rev Med Virol 23: 35–49. PubMed

Westerdahl H, Waldenström J, Hansson B, Hasselquist D, von Schantz T, Bensch S. (2005). Associations between malaria and MHC genes in a migratory songbird. Proc Biol Sci 272: 1511–1518. PubMed PMC

Yang Z. (2007). PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24: 1586–1591. PubMed

Yang Z, Wong WSW, Nielsen R. (2005). Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22: 1107–1118. PubMed

Yeager M, Hughes A. (1999). Evolution of the mammalian MHC: natural selection, recombination, and convergent evolution. Immunol Rev 167: 45–58. PubMed

Zagalska-Neubauer M, Babik W, Stuglik M, Gustafsson L, Cichoń M, Radwan J. (2010). 454 sequencing reveals extreme complexity of the class II major histocompatibility complex in the collared flycatcher. BMC Evol Biol 10: 395. PubMed PMC

Zhao Q-Y, Wang Y, Kong Y-M, Luo D, Li X, Hao P. (2011). Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study. BMC Bioinformatics 12 (Suppl 1): S2. PubMed PMC

Zieliński P, Stuglik MT, Dudek K, Konczal M, Babik W. (2014). Development, validation and high-throughput analysis of sequence markers in nonmodel species. Mol Ecol Resour 14: 352–360. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace