De novo transcriptome assembly facilitates characterisation of fast-evolving gene families, MHC class I in the bank vole (Myodes glareolus)
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27782121
PubMed Central
PMC5345602
DOI
10.1038/hdy.2016.105
PII: hdy2016105
Knihovny.cz E-zdroje
- MeSH
- alely MeSH
- Arvicolinae genetika MeSH
- DNA primery MeSH
- exony MeSH
- fylogeneze MeSH
- genetická variace MeSH
- genotyp MeSH
- geny MHC třídy I * MeSH
- hlavní histokompatibilní komplex genetika MeSH
- multigenová rodina MeSH
- myši MeSH
- transkriptom * MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA primery MeSH
The major histocompatibility complex (MHC) plays a central role in the adaptive immune response and is the most polymorphic gene family in vertebrates. Although high-throughput sequencing has increasingly been used for genotyping families of co-amplifying MHC genes, its potential to facilitate early steps in the characterisation of MHC variation in nonmodel organism has not been fully explored. In this study we evaluated the usefulness of de novo transcriptome assembly in characterisation of MHC sequence diversity. We found that although de novo transcriptome assembly of MHC I genes does not reconstruct sequences of individual alleles, it does allow the identification of conserved regions for PCR primer design. Using the newly designed primers, we characterised MHC I sequences in the bank vole. Phylogenetic analysis of the partial MHC I coding sequence (2-4 exons) of the bank vole revealed a lack of orthology to MHC I of other Cricetidae, consistent with the high gene turnover of this region. The diversity of expressed alleles was characterised using ultra-deep sequencing of the third exon that codes for the peptide-binding region of the MHC molecule. High allelic diversity was demonstrated, with 72 alleles found in 29 individuals. Interindividual variation in the number of expressed loci was found, with the number of alleles per individual ranging from 5 to 14. Strong signatures of positive selection were found for 8 amino acid sites, most of which are inferred to bind antigens in human MHC, indicating conservation of structure despite rapid sequence evolution.
Zobrazit více v PubMed
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. (1990). Basic local alignment search tool. J Mol Biol 215: 403–410. PubMed
Apanius V, Penn D, Slev PR, Ruff LR, Potts WK. (1997). The nature of selection on the major histocompatibility complex. Crit Rev Immunol 17: 179–224. PubMed
Axtner J, Sommer S. (2007). Gene duplication, allelic diversity, selection processes and adaptive value of MHC class II DRB genes of the bank vole, Clethrionomys glareolus. Immunogenetics 59: 417–426. PubMed
Babik W. (2010). Methods for MHC genotyping in non-model vertebrates. Mol Ecol Resour 10: 237–251. PubMed
Babik W, Radwan J. (2007). Sequence diversity of MHC class II DRB genes in the bank vole Myodes glareolus. Acta Theriol 52: 227–235.
Babik W, Taberlet P, Ejsmond MJ, Radwan J. (2009). New generation sequencers as a tool for genotyping of highly polymorphic multilocus MHC system. Mol Ecol Resour 9: 713–719. PubMed
Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J et al. (2013). GenBank. Nucleic Acids Res 41: D36–D42. PubMed PMC
Bernatchez L, Landry C. (2003). MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evol Biol 16: 363–377. PubMed
Bragg LM, Stone G, Butler MK, Hugenholtz P, Tyson GW. (2013). Shining a light on dark sequencing: characterising errors in Ion Torrent PGM data. PLoS Comput Biol 9: e1003031. PubMed PMC
Bryja J, Galan M, Charbonnel N, Cosson JF. (2006). Duplication, balancing selection and trans-species evolution explain the high levels of polymorphism of the DQA MHC class II gene in voles (Arvicolinae). Immunogenetics 58: 191–202. PubMed
Crew MD, Bates LM, Douglass CA, York JL. (1996). Expressed Peromyscus maniculatus (Pema) MHC class I genes: evolutionary implications and the identification of a gene encoding a Qa1-like antigen. Immunogenetics 44: 177–185. PubMed
Crew MD, Filipowsky ME, Neshat MS, Smith GS, Walford RL. (1991). Transmembrane domain length variation in the evolution of major histocompatibility complex class I genes. Proc Natl Acad Sci USA 88: 4666–4670. PubMed PMC
Crew MD, Filipowsky ME, Zeiler EC, Smith GS, Walford RL. (1990). Major histocompatibility complex class I genes of Peromyscus leucopus. Immunogenetics 1: 371–379. PubMed
Darriba D, Taboada GL, Doallo R, Posada D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9: 772. PubMed PMC
Deter J, Bryja J, Chaval Y, Galan M, Henttonen H, Laakkonen J et al. (2008). Association between the DQA MHC class II gene and Puumala virus infection in Myodes glareolus, the bank vole. Infect Genet Evol 8: 450–458. PubMed
Ejsmond MJ, Radwan J. (2015). Red Queen processes drive positive selection on major histocompatibility complex (MHC) genes. PLoS Comput Biol 11: e1004627. PubMed PMC
Filipi K, Marková S, Searle JB, Kotlík P. (2015). Mitogenomic phylogenetics of the bank vole Clethrionomys glareolus, a model system for studying end-glacial colonization of Europe. Mol Phylogenet Evol 82 (Pt A): 245–257. PubMed
Gourraud P-A, Khankhanian P, Cereb N, Yang SY, Feolo M, Maiers M et al. (2014). HLA diversity in the 1000 Genomes dataset. PLoS One 9: e97282. PubMed PMC
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson D a, Amit I et al. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29: 644–652. PubMed PMC
Guindon S, Gascuel O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696–704. PubMed
Guivier E, Galan M, Salvador AR, Xuéreb A, Chaval Y, Olsson GE et al. (2010). Tnf-α expression and promoter sequences reflect the balance of tolerance/resistance to Puumala hantavirus infection in European bank vole populations. Infect Genet Evol 10: 1208–1217. PubMed
Hughes AL, Nei M. (1989. a). Evolution of the major histocompatibility complex: independent origin of nonclassical class I genes in different groups of mammals. Mol Biol Evol 6: 559–579. PubMed
Hughes AL, Nei M. (1989. b). Nucleotide substitution at major histocompatibility complex class II loci: evidence for overdominant selection. Proc Natl Acad Sci USA 86: 958–962. PubMed PMC
Hurt P, Walter L, Sudbrak R, Klages S, Müller I, Shiina T et al. (2004). The genomic sequence and comparative analysis of the rat major histocompatibility complex. Genome Res 14: 631–639. PubMed PMC
Hutchins AP, Poulain S, Fujii H, Miranda-Saavedra D. (2012). Discovery and characterization of new transcripts from RNA-seq data in mouse CD4(+) T cells. Genomics 100: 303–313. PubMed
Jeffery KJM, Bangham CRM. (2000). Do infectious diseases drive MHC diversity? Microbes Infect 2: 1335–1341. PubMed
Kalendar R, Lee D, Schulman AH. (2014). FastPCR software for PCR, in silico PCR, and oligonucleotide assembly and analysis. Methods Mol Biol 1116: 271–302. PubMed
Katoh K. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30: 3059–3066. PubMed PMC
Katoh K, Standley DM. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30: 772–780. PubMed PMC
Kelley J, Walter L, Trowsdale J. (2005). Comparative genomics of major histocompatibility complexes. Immunogenetics 56: 683–695. PubMed
Klein J. (1986) Natural History of the Major Histocompatibility Complex. Wiley: New York.
Kloch A, Babik W, Bajer A, Siński E, Radwan J. (2010). Effects of an MHC-DRB genotype and allele number on the load of gut parasites in the bank vole Myodes glareolus. Mol Ecol 19 (Suppl 1): 255–265. PubMed
Konczal M, Koteja P, Orlowska-Feuer P, Radwan J, Sadowska ET, Babik W. (2016). Genomic response to selection for predatory behavior in a mammalian model of adaptive radiation. Mol Biol Evol 33: 2429–2440. PubMed
Kotlík P, Marková S, Vojtek L, Stratil A, Slechta V, Hyršl P et al. (2014). Adaptive phylogeography: functional divergence between haemoglobins derived from different glacial refugia in the bank vole. Proc Biol Sci 281: 20140021. PubMed PMC
Kuduk K, Babik W, Bojarska K, Sliwińska EB, Kindberg J, Taberlet P et al. (2012. a). Evolution of major histocompatibility complex class I and class II genes in the brown bear. BMC Evol Biol 12: 197. PubMed PMC
Kuduk K, Johanet A, Allainé D, Cohas A, Radwan J. (2012. b). Contrasting patterns of selection acting on MHC class I and class II DRB genes in the Alpine marmot (Marmota marmota). J Evol Biol 25: 1686–1693. PubMed
Kulski JK, Shiina T, Anzai T, Kohara S, Inoko H. (2002). Comparative genomic analysis of the MHC: the evolution of class I duplication blocks, diversity and complexity from shark to man. Immunol Rev 190: 95–122. PubMed
Langmead B, Salzberg SL. (2012). Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357–359. PubMed PMC
Li B, Fillmore N, Bai Y, Collins M, Thomson JA, Stewart R et al. (2014). Evaluation of de novo transcriptome assemblies from RNA-Seq data. Genome Biol 15: 553. PubMed PMC
Lighten J, van Oosterhout C, Bentzen P. (2014). Critical review of NGS analyses for de novo genotyping multigene families. Mol Ecol 23: 3957–3972. PubMed
Miller M, Kaukinen KH, Angel K, Kaukinen KH, Schulze AD. (2002). Expansion and contraction of major histocompatibility complex genes: a teleostean example. Immunogenetics 53: 941–963. PubMed
Marková S, Filipi K, Searle JB, Kotlík P. (2015). Mapping 3' transcript ends in the bank vole (Clethrionomys glareolus) mitochondrial genome with RNA-Seq. BMC Genomics 16: 870. PubMed PMC
Marková S, Searle JB, Kotlík P. (2014). Relaxed functional constraints on triplicate α-globin gene in the bank vole suggest a different evolutionary history from other rodents. Heredity (Edinb) 113: 64–73. PubMed PMC
McElroy KE, Luciani F, Thomas T. (2012). GemSIM: general, error-model based simulator of next-generation sequencing data. BMC Genomics 13: 74. PubMed PMC
Milne I, Stephen G, Bayer M, Cock PJA, Pritchard L, Cardle L et al. (2013). Using Tablet for visual exploration of second-generation sequencing data. Brief Bioinform 14: 193–202. PubMed
Mokkonen M, Kokko H, Koskela E, Lehtonen J, Mappes T, Martiskainen H et al. (2011). Negative frequency-dependent selection of sexually antagonistic alleles in Myodes glareolus. Science 334: 972–974. PubMed
Rada C, Lorenzi R, Powis SJ, van den Bogaerde J, Parham P, Howard JC. (1990). Concerted evolution of class I genes in the major histocompatibility complex of murine rodents. Proc Natl Acad Sci USA 87: 2167–2171. PubMed PMC
Radwan J, Zagalska-Neubauer M, Cichoń M, Sendecka J, Kulma K, Gustafsson L et al. (2012). MHC diversity, malaria and lifetime reproductive success in collared flycatchers. Mol Ecol 21: 2469–2479. PubMed
Reche PA., Reinherz EL. (2003). Sequence variability analysis of human class I and class II MHC molecules: Functional and structural correlates of amino acid polymorphisms. J Mol Biol 331: 623–641. PubMed
Reusch TBH, Schaschl H, Wegner KM. (2004). Recent duplication and inter-locus gene conversion in major histocompatibility class II genes in a teleost, the three-spined stickleback. Immunogenetics 56: 427–437. PubMed
Rice P, Longden I, Bleasby A. (2000). EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16: 276–277. PubMed
Robinson J, Halliwell JA, McWilliam H, Lopez R, Parham P, Marsh SGE. (2013). The IMGT/HLA database. Nucleic Acids Res 41: D1222–D1227. PubMed PMC
Rubocki RJ, Lee DR, Lie WR, Myers NB, Hansen TH. (1990). Molecular evidence that the H-2D and H-2L genes arose by duplication. Differences between the evolution of the class I genes in mice and humans. J Exp Med 171: 2043–2061. PubMed PMC
Sadowska ET, Baliga-Klimczyk K, Chrzaścik KM, Koteja P. (2008). Laboratory model of adaptive radiation: a selection experiment in the bank vole. Physiol Biochem Zool 81: 627–640. PubMed
Scherman K, Råberg L, Westerdahl H. (2014). Positive selection on MHC class II DRB and dqb genes in the bank vole (Myodes glareolus). J Mol Evol 78: 293–305. PubMed
Sebastian A, Herdegen M, Migalska M, Radwan J. (2016). amplisas: a web server for multilocus genotyping using next-generation amplicon sequencing data. Mol Ecol Resour 16: 498–510. PubMed
Sommer S, Courtiol A, Mazzoni CJ. (2013). MHC genotyping of non-model organisms using next-generation sequencing: a new methodology to deal with artefacts and allelic dropout. BMC Genomics 14: 542. PubMed PMC
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30: 2725–2729. PubMed PMC
Vaheri A, Henttonen H, Voutilainen L. (2013). Hantavirus infections in Europe and their impact on public health. Rev Med Virol 23: 35–49. PubMed
Westerdahl H, Waldenström J, Hansson B, Hasselquist D, von Schantz T, Bensch S. (2005). Associations between malaria and MHC genes in a migratory songbird. Proc Biol Sci 272: 1511–1518. PubMed PMC
Yang Z. (2007). PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24: 1586–1591. PubMed
Yang Z, Wong WSW, Nielsen R. (2005). Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22: 1107–1118. PubMed
Yeager M, Hughes A. (1999). Evolution of the mammalian MHC: natural selection, recombination, and convergent evolution. Immunol Rev 167: 45–58. PubMed
Zagalska-Neubauer M, Babik W, Stuglik M, Gustafsson L, Cichoń M, Radwan J. (2010). 454 sequencing reveals extreme complexity of the class II major histocompatibility complex in the collared flycatcher. BMC Evol Biol 10: 395. PubMed PMC
Zhao Q-Y, Wang Y, Kong Y-M, Luo D, Li X, Hao P. (2011). Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study. BMC Bioinformatics 12 (Suppl 1): S2. PubMed PMC
Zieliński P, Stuglik MT, Dudek K, Konczal M, Babik W. (2014). Development, validation and high-throughput analysis of sequence markers in nonmodel species. Mol Ecol Resour 14: 352–360. PubMed