Influence of Cadmium(II) Ions and Brewery Sludge on Metallothionein Level in Earthworms (Eisenia fetida) - Bio- transforming of Toxic Wastes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
27879751
PubMed Central
PMC3927502
DOI
10.3390/s8021039
PII: s8021039
Knihovny.cz E-zdroje
- Klíčová slova
- Biochemical marker, Cadmium, Earthworm, Electrochemistry, Heavy metals, Metallothionein, Voltammetry,
- Publikační typ
- časopisecké články MeSH
Metallothioneins belong to a group of intracellular, high molecular andcysteine-rich proteins whose content in an organism increase with increasing concentrationof a heavy metal. The aim of this work was to apply the electrochemical analysis for theanalysis of metallothioneins in earthworms exposed to cadmium ions and brewery sludge.Here we utilized adsorptive transfer technique coupled with differential pulse voltammetryBrdicka reaction to determine metallothionein in different biological samples. By meansthis very sensitive technique it was possible to analyze metallothionein in concentrationsbelow 1 μmol.l⁻1 with the standard deviation of 4-5%. We found out that the average MTlevel in the non-treated earthworms oscillated between 19 and 48 μmol.l-1. When weanalysed samples of earthworms treated by cadmium, we observed that the MT contentincreased with the exposition length and increase dose of cadmium ions. Finally, weattempted to study and compare the toxicity of the raw sludge and its leach by using ofearthworms. The raw brewery sludge caused the death of the earthworms quickly.Earthworms held in the presence of leach from brewery sludge increased their weight of147 % of their original weight because they ingested the nutrients from the sludge. Themetallothionein level changes markedly with increasing time of exposition and applieddose of toxic compound. It clearly follows from the obtained results that the MT synthesisis insufficient in the first hours of the exposition and increases after more than 24 h.
Zobrazit více v PubMed
Ma W.C. Estimating heavy metal accumulation in oligochaete earthworms: A meta-analysis of field data. Bull. Environ. Contam. Toxicol. 2004;72:663–670. PubMed
Booth L.H., Hodge S., O'Halloran K. Use of biomarkers in earthworms to detect use and abuse of field applications of a model organophosphate pesticide. Bull. Environ. Contam. Toxicol. 2001;67:633–640. PubMed
Ramos L., Fernandez M.A., Gonzalez M.J., Hernandez L.M. Heavy metal pollution in water, sediments, and earthworms from the Ebro River, Spain. Bull. Environ. Contam. Toxicol. 1999;63:305–311. PubMed
Fitzpatrick L.C., MurattiOrtiz J.F., Venables B.J., Goven A.J. Comparative toxicity in earthworms Eisenia fetida and Lumbricus terrestris exposed to cadmium nitrate using artificial soil and filter paper protocols. Bull. Environ. Contam. Toxicol. 1996;57:63–68. PubMed
Aira M., Monroy F., Dominguez J. Changes in microbial biomass and microbial activity of pig slurry after the transit through the gut of the earthworm Eudrilus eugeniae (Kinberg, 1867) Biol. Fertil. Soils. 2006;42:371–376.
Unwin R.J., Lewis S. The Effect Upon Earthworm Populations of Very Large Applications of Pig Slurry to Grassland. Agricult. Wastes. 1986;16:67–73.
Debry J.M., Houssiau M., Lemassonflorenville M., Wauthy G., Lebrun P. Impact of Introduced Earthworm Populations on Ph and Nitrogen Dynamics in Soils Treated with Pig Slurry. Pedobiologia. 1982;23:157–171.
Marijic V.F., Raspor B. Age- and tissue-dependent metallothionein and cytosolic metal distribution in a native Mediterranean fish, Mullus barbatus, from the Eastern Adriatic Sea. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 2006;143:382–387. PubMed
Dragun Z., Raspor B., Erk M., Ivankovic D., Pavicic J. The influence of the biometric parameters on metallothionein and metal level in the heat-treated cytosol of the whole soft tissue of transplanted mussels. Environ. Monit. Assess. 2006;114:49–64. PubMed
Kagi J.G.R., Schaffer A. Biochemistry of Metallothionein. Biochemistry. 1988;27:8509–8515. PubMed
Kizek R., Trnkova L., Palecek E. Determination of metallothionein at the femtomole level by constant current stripping chronopotentiometry. Anal. Chem. 2001;73:4801–4807. PubMed
Trnkova L., Kizek R., Vacek J. Catalytic signal of rabbit liver metallothionein on a mercury electrode: a combination of derivative chronopotentiometry with adsorptive transfer stripping. Bioelectrochemistry. 2002;56:57–61. PubMed
Nordberg M., Nordberg G.F. Toxicological aspects of metallothionein. Cell. Mol. Biol. 2000;46:451–463. PubMed
Strouhal M., Kizek R., Vacek J., Trnkova L., Nemec M. Electrochemical study of heavy metals and metallothionein in yeast Yarrowia lipolytica. Bioelectrochemistry. 2003;60:29–36. PubMed
Adam V., Petrlova J., Potesil D., Zehnalek J., Sures B., Trnkova L., Jelen F., Kizek R. Study of metallothionein modified electrode surface behavior in the presence of heavy metal ions-biosensor. Electroanalysis. 2005;17:1649–1657.
Wu S.M., Jong K.J., Lee Y.J. Relationships among metallothionein, cadmium accumulation, and cadmium tolerance in three species of fish. Bull. Environ. Contam. Toxicol. 2006;76:595–600. PubMed
Eroglu K., Atli G., Canli M. Effects of metal (Cd, Cu, Zn) interactions on the profiles of metallothionein-like proteins in the nile fish Oreochromis niloticus. Bull. Environ. Contam. Toxicol. 2005;75:390–399. PubMed
Martins N., Lopes I., Guilhermino L., Bebianno M.J., Ribeiro R. Lack of evidence for metallothionein role in tolerance to copper by natural populations of Daphnia longispina. Bull. Environ. Contam. Toxicol. 2005;74:761–768. PubMed
Rovira M.S., Fernandez-Diaz C., Canavate J.P., Blasco J. Effects on metallothionein levels and other stress defences in Senegal sole larvae exposed to cadmium. Bull. Environ. Contam. Toxicol. 2005;74:597–603. PubMed
Kizek R., Vacek J., Trnkova L., Jelen F. Cyclic voltammetric study of the redox system of glutathione using the disulfide bond reductant tris(2-carboxyethyl)phosphine. Bioelectrochemistry. 2004;63:19–24. PubMed
Petrlova J., Potesil D., Mikelova R., Blastik O., Adam V., Trnkova L., Jelen F., Prusa R., Kukacka J., Kizek R. Attomole voltammetric determination of metallothionein. Electrochim. Acta. 2006;51:5112–5119.
Adam V., Blastik O., Krizkova S., Lubal P., Kukacka J., Prusa R., Kizek R. Application of the Brdicka reaction in determination of metallothionein in patients with tumours. Chem. Listy. 2008;102:51–58.
Krizkova S., Zitka O., Adam V., Beklova M., Horna A., Svobodova Z., Sures B., Trnkova L., Zeman L., Kizek R. Possibilities of electrochemical techniques in metallothionein and lead detection in fish tissues. Czech J. Anim. Sci. 2007;52:143–148.
Petrlova J., Krizkova S., Zitka O., Hubalek J., Prusa R., Adam V., Wang J., Beklova M., Sures B., Kizek R. Utilizing a chronopotentiometric sensor technique for metallothionein determination in fish tissues and their host parasites. Sens. Actuator B-Chem. 2007;127:112–119.
Yamamura M., Mori T., Suzuki K.T. Metallothionein Induced in the Earthworm. Experientia. 1981;37:1187–1189.
Morgan A.J., Sturzenbaum S.R., Winters C., Grime G.W., Abd Aziz N.A., Kille P. Differential metallothionein expression in earthworm (Lumbricus rubellus) tissues. Ecotox. Environ. Safe. 2004;57:11–19. PubMed
Homa J., Olchawa E., Sturzenbaum S.R., Morgan A.J., Plytycz B. Early-phase immunodetection of metallothionein and heat shock proteins in extruded earthworm coelomocytes after dermal exposure to metal ions. Environ. Pollut. 2005;135:275–280. PubMed
Sturzenbaum S.R., Kille P., Morgan A.J. The identification, cloning and characterization of earthworm metallothionein. FEBS Lett. 1998;431:437–442. PubMed
Langdon C.J., Winters C., Sturzenbaum S.R., Morgan A.J., Charnock J.M., Meharg A.A., Piearce T.G., Lee P.H., Semple K.T. Ligand arsenic complexation and immunoperoxidase detection of metallothionein in the earthworm Lumbricus rubellus inhabiting arsenic-rich soil. Environ. Sci. Technol. 2005;39:2042–2048. PubMed
Prusa R., Petrlova J., Kukacka J., Adam V., Sures B., Beklova M., Kizek R. Study of interaction of glutathiones and metallothionein with cytostatics. Clin. Chem. 2006;52:A175–A175.
Adam V., Beklova M., Pikula J., Hubalek J., Trnkova L., Kizek R. Shapes of differential pulse voltammograms and level of metallothionein at different animal species. Sensors. 2007;7:2419–2429. PubMed PMC
Effect of cadmium chloride on metallothionein levels in carp
Changes in metallothionein level in rat hepatic tissue after administration of natural mouldy wheat
Utilization of Electrochemical Sensors and Biosensors in Biochemistry and Molecular Biology