Rapid in situ toxicity testing with luminescent bacteria Photorhabdus luminescens and Vibrio fischeri adapted to a small portable luminometer
Language English Country Germany Media print-electronic
Document type Journal Article
PubMed
27888485
DOI
10.1007/s11356-016-8096-9
PII: 10.1007/s11356-016-8096-9
Knihovny.cz E-resources
- Keywords
- In situ testing, Photorhabdus luminescens, Portable biotest, Vibrio fisheri, Whole effluent testing (WET),
- MeSH
- Aliivibrio fischeri growth & development MeSH
- Time Factors MeSH
- Luminescence MeSH
- Luminescent Measurements methods MeSH
- Photorhabdus growth & development MeSH
- Reproducibility of Results MeSH
- Fresh Water MeSH
- Toxicity Tests methods MeSH
- Publication type
- Journal Article MeSH
The present study demonstrates development of a rapid testing protocol based on a small portable luminometer using flash kinetic assessment of bacterial bioluminescence. The laboratory comparisons based on six model organic toxicants and two metals showed significant correlations between responses of freshwater bacteria Photorhabdus luminescens and standard marine bacterial species Vibrio fisheri. While P. luminescens was less sensitive in standard arrangements, the responses of both organisms were comparable in the newly introduced portable luminometer setup. The applicability and reproducibility of the portable luminometer protocol was further demonstrated in the assessment of 43 European wastewater effluents that were simultaneously tested for toxicity and analysed for 150 organic and 20 inorganic contaminants grouped into 13 major chemical classes. Clear association between the toxic responses in both compared bacterial species and the elevated levels of inorganic compounds (toxic metals), chlorophenols and benzotriazole anticorrosives was observed. The new protocol with a portable luminometer provides a fast (30 s) response and may be used as a tool for rapid in situ toxicity evaluation of freshwater environmental samples such as effluents.
See more in PubMed
Sensors (Basel). 2011;11(8):7865-78 PubMed
Chemosphere. 2005 Jun;60(1):9-15 PubMed
Chemosphere. 2001 Nov;45(4-5):635-41 PubMed
Talanta. 2006 Apr 15;69(2):323-33 PubMed
Environ Sci Pollut Res Int. 2010 Jan;17(1):135-44 PubMed
Environ Sci Pollut Res Int. 2015 Jun;22(12 ):8957-68 PubMed
Arch Microbiol. 1985 Feb;141(1):44-50 PubMed
Sci Total Environ. 2008 Aug 15;401(1-3):51-9 PubMed
Environ Sci Technol. 2014;48(3):1940-56 PubMed
Ecotoxicol Environ Saf. 2014 Jun;104:51-71 PubMed
Sci Total Environ. 2006 Jun 15;363(1-3):114-25 PubMed
Environ Sci Pollut Res Int. 2014 Sep;21(18):10970-82 PubMed
Water Res. 2013 Nov 1;47(17):6475-87 PubMed
Ecotoxicol Environ Saf. 2004 Oct;59(2):263-72 PubMed
Environ Sci Technol. 2013 Jul 2;47(13):7002-11 PubMed
J Gen Microbiol. 1992 Jul;138(7):1289-300 PubMed
Water Res. 2001 Oct;35(14):3448-56 PubMed
J Toxicol Environ Health A. 2010;73(16):1102-12 PubMed
Chemosphere. 2002 Jan;46(2):225-33 PubMed
Ecotoxicol Environ Saf. 2009 Mar;72(3):851-61 PubMed
Int J Syst Evol Microbiol. 2007 Dec;57(Pt 12):2823-9 PubMed
Environ Sci Pollut Res Int. 2015 May;22(10):7405-21 PubMed
Environ Toxicol. 2004 Jun;19(3):161-78 PubMed
Bull Environ Contam Toxicol. 1999 Mar;62(3):247-53 PubMed
Chemosphere. 1999 Jan;38(1):67-78 PubMed
J Basic Microbiol. 2013 Mar;53(3):268-76 PubMed
Environ Health Perspect. 1998 Apr;106 Suppl 2:583-91 PubMed
Environ Sci Pollut Res Int. 2015 Sep;22(17):13344-61 PubMed
Int J Hyg Environ Health. 2011 Nov;214(6):442-8 PubMed
J Hazard Mater. 2009 Apr 30;163(2-3):665-70 PubMed
Environ Sci Pollut Res Int. 2014 Feb;21(4):2805-16 PubMed
Environ Sci Pollut Res Int. 2015 Oct;22(19):14606-20 PubMed
Environ Toxicol Chem. 2010 Mar;29(3):507-14 PubMed
Environ Pollut. 2010 Jun;158(6):2282-7 PubMed