• This record comes from PubMed

Rapid in situ toxicity testing with luminescent bacteria Photorhabdus luminescens and Vibrio fischeri adapted to a small portable luminometer

. 2017 Feb ; 24 (4) : 3748-3758. [epub] 20161126

Language English Country Germany Media print-electronic

Document type Journal Article

Links

PubMed 27888485
DOI 10.1007/s11356-016-8096-9
PII: 10.1007/s11356-016-8096-9
Knihovny.cz E-resources

The present study demonstrates development of a rapid testing protocol based on a small portable luminometer using flash kinetic assessment of bacterial bioluminescence. The laboratory comparisons based on six model organic toxicants and two metals showed significant correlations between responses of freshwater bacteria Photorhabdus luminescens and standard marine bacterial species Vibrio fisheri. While P. luminescens was less sensitive in standard arrangements, the responses of both organisms were comparable in the newly introduced portable luminometer setup. The applicability and reproducibility of the portable luminometer protocol was further demonstrated in the assessment of 43 European wastewater effluents that were simultaneously tested for toxicity and analysed for 150 organic and 20 inorganic contaminants grouped into 13 major chemical classes. Clear association between the toxic responses in both compared bacterial species and the elevated levels of inorganic compounds (toxic metals), chlorophenols and benzotriazole anticorrosives was observed. The new protocol with a portable luminometer provides a fast (30 s) response and may be used as a tool for rapid in situ toxicity evaluation of freshwater environmental samples such as effluents.

See more in PubMed

Sensors (Basel). 2011;11(8):7865-78 PubMed

Chemosphere. 2005 Jun;60(1):9-15 PubMed

Chemosphere. 2001 Nov;45(4-5):635-41 PubMed

Talanta. 2006 Apr 15;69(2):323-33 PubMed

Environ Sci Pollut Res Int. 2010 Jan;17(1):135-44 PubMed

Environ Sci Pollut Res Int. 2015 Jun;22(12 ):8957-68 PubMed

Arch Microbiol. 1985 Feb;141(1):44-50 PubMed

Sci Total Environ. 2008 Aug 15;401(1-3):51-9 PubMed

Environ Sci Technol. 2014;48(3):1940-56 PubMed

Ecotoxicol Environ Saf. 2014 Jun;104:51-71 PubMed

Sci Total Environ. 2006 Jun 15;363(1-3):114-25 PubMed

Environ Sci Pollut Res Int. 2014 Sep;21(18):10970-82 PubMed

Water Res. 2013 Nov 1;47(17):6475-87 PubMed

Ecotoxicol Environ Saf. 2004 Oct;59(2):263-72 PubMed

Environ Sci Technol. 2013 Jul 2;47(13):7002-11 PubMed

J Gen Microbiol. 1992 Jul;138(7):1289-300 PubMed

Water Res. 2001 Oct;35(14):3448-56 PubMed

J Toxicol Environ Health A. 2010;73(16):1102-12 PubMed

Chemosphere. 2002 Jan;46(2):225-33 PubMed

Ecotoxicol Environ Saf. 2009 Mar;72(3):851-61 PubMed

Int J Syst Evol Microbiol. 2007 Dec;57(Pt 12):2823-9 PubMed

Environ Sci Pollut Res Int. 2015 May;22(10):7405-21 PubMed

Environ Toxicol. 2004 Jun;19(3):161-78 PubMed

Bull Environ Contam Toxicol. 1999 Mar;62(3):247-53 PubMed

Chemosphere. 1999 Jan;38(1):67-78 PubMed

J Basic Microbiol. 2013 Mar;53(3):268-76 PubMed

Environ Health Perspect. 1998 Apr;106 Suppl 2:583-91 PubMed

Environ Sci Pollut Res Int. 2015 Sep;22(17):13344-61 PubMed

Int J Hyg Environ Health. 2011 Nov;214(6):442-8 PubMed

J Hazard Mater. 2009 Apr 30;163(2-3):665-70 PubMed

Environ Sci Pollut Res Int. 2014 Feb;21(4):2805-16 PubMed

Environ Sci Pollut Res Int. 2015 Oct;22(19):14606-20 PubMed

Environ Toxicol Chem. 2010 Mar;29(3):507-14 PubMed

Environ Pollut. 2010 Jun;158(6):2282-7 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...