Glacial refugia and the prediction of future habitat coverage of the South American lichen species Ochrolechia austroamericana
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
27929090
PubMed Central
PMC5144090
DOI
10.1038/srep38779
PII: srep38779
Knihovny.cz E-resources
- MeSH
- Ecosystem * MeSH
- Ice Cover * MeSH
- Lichens physiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- South America MeSH
The biogeographic history of lichenized fungi remains unrevealed because those organisms rarely fossilize due to their delicate, often tiny and quickly rotting thalli. Also the ecology and factors limiting occurrence of numerous taxa, especially those restricted in their distribution to tropical areas are poorly recognized. The aim of this study was to determine localization of glacial refugia of South American Ochrolechia austroamericana and to estimate the future changes in the coverage of its habitats using ecological niche modeling tools. The general glacial potential range of the studied species was wider than it is nowadays and its niches coverage decreased by almost 25% since last glacial maximum. The refugial areas were covered by cool and dry grasslands and scrubs and suitable niches in South America were located near the glacier limit. According to our analyses the further climate changes will not significantly influence the distribution of the suitable niches of O. austroamericana.
See more in PubMed
Sipman H. J. M. & Aptroot A. Where are the missing lichens? Mycol. Res. 105, 1433–1439 (2001).
Miądlikowska J. et al. A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Mol. Phylogenet. Evol. 79, 132–168 (2014). PubMed PMC
Nash T. H. Lichen Biology, 2nd ed. (Cambridge University Press, 2008).
van Dobben H. F. Decline and recovery of epiphytic lichens in an agricultural area in the Netherlands (1900-1988). Nova Hedwigia 62, 477–485 (1996).
Rusu A.-M., Jones G. C., Chimonides P. D. J. & Purvis W. O. Biomonitoring using the lichen PubMed
Wolseley P., James P. W., Theobald M. R. & Sutton M. A. Detecting changes in epiphytic lichen communities at sites affected by atmospheric ammonia from agricultural sources. Lichenologist 38, 161–176 (2006).
Motiejūnaitė J. Epiphytic lichen community dynamics in deciduous forests around a phosphorus fertiliser factory in central Lithuania. Environ. Pollut. 146, 341–349 (2007). PubMed
Sparrius L. B. Response of epiphytic lichen communities to decreasing ammonia air concentrations in a moderately polluted area of the Netherlands. Environ. Pollut. 146, 375–379 (2007). PubMed
Otnyukova T. & Sekretenko O. P. Spatial distribution of lichens on twigs in remote Siberian silver fir forests indicates changing atmospheric conditions. Lichenologist 40, 243–256 (2008).
van Herk C. M. Climate change and ammonia from cars as notable recent factors influencing epiphytic lichens in Zeeland, Netherlands. Bibl. Lichenol. 99, 205–224 (2009).
Olsen H. B., Berthelsen K., Andersen H. V. & Søchting U. PubMed
Żółkoś K., Kukwa M. & Afranowicz-Cieślak R. Changes in the epiphytic lichen biota in Scots pine (
Printzen C. & Lumbsch H. T. Molecular evidence for the diversification of extant lichens in the Late Cretaceous and Tertiary. Mol. Phylogenet. Evol. 17, 379–387 (2000). PubMed
Colyn M., Gautier-Hion A. & Verhaven W. A re-appraisal of palaeoenvironmental history in central Africa: evidence for a major fluvial refuge in the Zaire Basin. J. Biogeogr. 18, 403–407 (1991).
Segovia R. A., Pérez M. F. & Hinojosa L. F. Genetic evidence for glacial refugia of the temperate tree PubMed
Tzedakisemail P. C., Emerson B. C. & Hewitt G. M. Cryptic or mystic? Glacial tree refugia in northern Europe. Trends Ecol. Evol. 28, 696–704 (2013). PubMed
Juřičková L., Horáčková J. & Ložek V. Direct evidence of central European forest refugia during the last glacial period based on mollusc fossils. Quat. Res. 82, 222–228 (2014).
Peterson E. B. An overlooked fossil lichen (Lobariaceae). Lichenologist 32, 298–300 (2000).
Poinar G. O. Jr. Peterson E. B. & Platt J. L. Fossil
Rikkinen J. & Poinar G. O. Jr. Fossilised
Rikkinen J. & Poinar G. O. Jr. A new species of PubMed
Knaap van der W. O., Aptroot A. & Oosterveld P. A 7500-year-old record of
Kukwa M., Rodriguez Flakus P. & Flakus A. Notes on the lichen genus
Messuti M. I. & Lumbsch H. T. A revision of the genus
Kukwa M. The lichen genus Ochrolechia in Europe (Fundacja Rozwoju Uniwersytetu Gdańskiego, 2011).
Carlsen T. et al. Species delimitation, bioclimatic range, and conservation status of the threatened lichen
Martínez I., Carreño F., Escudero A. & Rubio A. Are threatened lichen species well-protected in Spain? Effectiveness of a protected areas network. Biol. Cons. 133, 500–511 (2006).
Binder M. D. & Ellis C. J. Conservation of the rare British lichen
Cameron R. P., Neily T. & Clayden S. R. Distribution prediction model for
Phillips S. J., Anderson R. & Schapire R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231–259 (2006).
Phillips S. J. et al. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009). PubMed
Olson J. S., Watts J. A. & Allison L. J. Carbon in live vegetation of major world ecosystems (Oak Ridge National Laboratory, 1983).
Guisan A. & Zimmermann N. E. Predictive habitat distribution models in ecology. Ecol. Modell. 135, 147–186 (2000).
Araújo M. B. & Rahbek C. How does climate change affect biodiversity? Science 313, 1396–1397 (2006). PubMed
Chapman D. S. Weak climatic associations among British plant distributions. Global Ecol Biogeogr 19, 831–841 (2010).
Kumar S. & Stohlgren T. J. Maxent modeling for predicting suitable habitat for threatened and endangered tree
Rebelo H. & Jones G. Ground validation of presence-only modelling with rare species: a case study on barbastelles
Beale C. M., Lennon J. J. & Gimona A. Opening the climate envelope reveals no macroscale associations with climate in European birds. Proc. Natl. Acad. Sci. USA 105, 14908–14912 (2008). PubMed PMC
Araújo M. B., Thuiller W. & Yoccoz N. G. Reopening the climate envelope reveals macroscale associations with climate in European birds. Proc. Natl. Acad. Sci. USA 106, E45–E46 (2009). PubMed PMC
Beaumont L. J., Hughes L. & Poulsen M. Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol. Modell. 186, 250–269 (2005).
Barve N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Modell. 222, 1810–1819 (2011).
Ellis C. J., Coppins B. J., Dawson T. P. & Seaward M. R. D. Response of British lichens to climate change scenarios: Trends and uncertainties in the projected impact for contrasting biogeographic groups. Biol. Cons. 140, 217–235 (2007).
Ellis C. J. A risk-based model of climate change threat: hazard, exposure, and vulnerability in the ecology of lichen epiphytes. Botany 91, 1–11 (2013).
Brodo I. M. Studies of the lichen genus
Boqueras M., Barbero M. & Llimona X. El género
Jia Z.-F. & Zhao Z.-T. A preliminary study of the lichen genus
Roemer J., Nash T. H. III, Lumbsch H. T. & Messuti M. I. Ochrolechia. In (eds Nash T. H. III, Ryan B. D., Diederich P., Gries C., Bungartz F.) Lichen Flora of the Greater Sonoran Desert Region 2, 381–387 (Lichens Unlimited, Arizona State University, 2004).
Galloway D. Flora of New Zealand Lichens. Revised Second Edition Including Lichen-Forming and Lichenicolous Fungi. Volumes 1 and 2 (Manaaki Whenua Press, 2007).
Brodo I. M. Studies in the lichens genus
Parnmen S., Leavitt S. D., Rangsiruji A. & Lumbsch H. T. Identification of species in the
Lücking R. et al. A single macrolichen constitutes hundreds of unrecognized species. Proc. Natl. Acad. Sci. USA 111, 11091–11096 (2014). PubMed PMC
Ponce J. F., Rabassa J., Coronato A. & Borromei A. M. Palaeogeographical evolution of the Atlantic coast of Pampa and Patagonia from the last glacial maximum to the Middle Holocene. Biol. J. Linnean Soc. 103, 363–379 (2011).
Hooghiemstra H. & Ran E. T. H. Late Pliocene-Pleistocene high resolution pollen sequence of Colombia: An overview of climatic change. Quat. Int. 21, 63–80 (1994).
Baker P. A. Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano. Nature 409: 698–701 (2001). PubMed
Seltzer G. et al. Early warming of the tropical South America at the last glacial-interglacial transition. Science 297, 1685–1686 (2002). PubMed
Abbott M. B. et al. Holocene paleohydrology and glacial history of the central Andes using multiproxy lake sediment studies. Palaeogeogr. Palaeoclimatol. Palaeoecol. 194, 123–138 (2003).
Villalba R. et al. Large-Scale Temperature Changes Across the Southern Andes: 20th-Century Variations in the Context of the Past 400 Years. Clim. Chang. 59, 177–232 (2003).
Weng C., Bush M. B., Curtis J. H., Kolata A. L., Dillehay T. D. & Binford M. W. Deglaciation and Holocene climate change in the western Peruvian Andes. Quat. Res. 66, 87–96 (2006).
Vuille M. & Milana J. P. High-latitude forcing of regional aridification along the subtropical west coast of South America. Geophys. Res. Lett. 34, L23703 (2007).
Rabatel A. et al. Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere 7, 81–102 (2013).
Boulanger J.-P., Martinez F. & Segura E. C. Projection of future climate change conditions using IPCC simulations, neural networks and Bayesian statistics. Part 1: Temperature mean state and seasonal cycle in South America. Clim. Dynam. 27, 233–259 (2006).
Young K. & León B. Tree-line changes along the Andes: implications of spatial patterns and dynamics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 263–272 (2007). PubMed PMC
Orange A., James P. W. & White F. J. Microchemical methods for the identification of lichens (British Lichen Society, 2001).
Phillips S. J., Dudík M. & Schapire R. E. A maximum entropy approach to species distribution modeling. in ICML ′04 Proceedings of the twenty-first international conference on Machine learning, 655–662 (ACM, 2004).
Elith J., Phillips S. J., Hastie T., Dudík M., Chee Y. E. & Yates C. J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).
Pearson R. G., Raxworthy C. J., Nakamura M. & Peterson A. T. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2006).
Wisz M. S. et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 14, 763–773 (2008).
Hijmans R. J., Cameron S. E., Parra J. L., Jones P. G. & Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
Urbina-Cardona J. N. & Loyola R. D. Applying niche-based models to predict endangered-hylid potential distributions: are neotropical protected areas effective enough? Trop. Conserv. Sci. 1, 417–445 (2008).
Braconnot P. et al. Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum, Part 1: experiments and large-scale features. Clim. Past 3, 261–277 (2007).
Mitchell T. D. & Osborn T. J.
Ramirez J. & Jarvis A.
Stockwell D. R. B. & Peters D. G. The GARP modelling system: Problems and solutions to automated spatial prediction. International Journal of Geographic Information Systems 13, 143–158 (1999).
Muñoz M. E. S. et al. OpenModeller: a generic approach to species’ potential distribution modelling”. GeoInformatica 15, 111–135 (2011).
Schoener T. W. The anolis lizards of bimini: Resource partitioning in a complex fauna. Ecology 49, 704–726 (1968).
Warren D. L., Glor R. E. & Turelli M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 62, 2868–2883 (2008). PubMed
Warren D. L., Glor R. E. & Turelli M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33, 607–611 (2010).
ESRI.
QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2016).