In Vitro Antitumor Active Gold(I) Triphenylphosphane Complexes Containing 7-Azaindoles
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
27973440
PubMed Central
PMC5187884
DOI
10.3390/ijms17122084
PII: ijms17122084
Knihovny.cz E-zdroje
- Klíčová slova
- 7-azaindole, antitumor activity, crystal structures, gold(I) complexes, in vitro, triphenylphosphane,
- MeSH
- buněčná smrt účinky léků MeSH
- buněčný cyklus účinky léků MeSH
- fosfiny chemická syntéza chemie farmakologie MeSH
- indoly chemická syntéza chemie farmakologie MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- protinádorové látky farmakologie MeSH
- protonová magnetická rezonanční spektroskopie MeSH
- voda chemie MeSH
- zlato farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 7-azaindole dimer MeSH Prohlížeč
- fosfiny MeSH
- indoly MeSH
- protinádorové látky MeSH
- voda MeSH
- zlato MeSH
A series of gold(I) complexes of the general composition [Au(naza)(PPh₃)] (1-8) was prepared and thoroughly characterized (e.g., electrospray ionization (ESI) mass spectrometry and multinuclear nuclear magnetic resonance (NMR) spectroscopy). The N1-deprotonated anions of 7-azaindole or its derivatives (naza) are coordinated to the metal centre through the N1 atom of their pyrrole ring, as proved by a single crystal X-ray analysis of the complexes [Au(3I5Braza)(PPh₃)] (7) and [Au(2Me4Claza)(PPh₃)]·½H₂O (8'). The in vitrocytotoxicity of the complexes 1-8 was studied against both the cisplatin-sensitive and -resistant variants of the A2780 human ovarian carcinoma cell line, as well as against the MRC-5 human normal fibroblast cell line. The complexes 4, 5, and 8, containing deprotonated 3-iodo-7-azaindole, 5-bromo-7-azaindole, and 2-methyl-4-chloro-7-azaindole (2Me4Claza), respectively, showed significantly higher potency (IC50 = 2.8-3.5 µM) than cisplatin (IC50 = 20.3 µM) against the A2780 cells and markedly lower effect towards the MRC-5 non-cancerous cells (IC50 = 26.0-29.2 µM), as compared with the mentioned A2780 cancer cells. The results of the flow cytometric studies of the A2780 cell cycle perturbations revealed a G₂-cell cycle phase arrest of the cells treated by the representative complexes 1 and 5, which is indicative of a different mechanism of action from cisplatin (induced S-cell cycle phase arrest). The stability of the representative complex 8 in the water-containing solution as well as its ability to interact with the reduced glutathione, cysteine and bovine serum albumin was also studied using ¹H and 31P-NMR spectroscopy (studied in the 50% DMF-d₇/50% D₂O mixture) and ESI+ mass spectrometry (studied in the 50% DMF/50% H₂O mixture); DMF = dimethylformamide. The obtained results are indicative for the release of the N-donor azaindole-based ligand in the presence of the used biomolecules.
Zobrazit více v PubMed
Gielen M., Tiekink E.R.T. Metallotherapeutic Drugs and Metal Based Diagnostic Agents. Wiley; New York, NY, USA: 2005.
Mjos K.D., Orvig C. Metallodrugs in medicinal inorganic chemistry. Chem. Rev. 2014;114:4540–4563. doi: 10.1021/cr400460s. PubMed DOI
Barry N.P.E., Sadler P.J. Exploration of the medical periodic table: Towards new targets. Chem. Commun. 2013;49:5106–5131. doi: 10.1039/c3cc41143e. PubMed DOI
Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer. 2007;7:573–584. doi: 10.1038/nrc2167. PubMed DOI
Shaw C.F., III Gold-Based therapeutic agents. Chem. Rev. 1999;99:2589–2600. doi: 10.1021/cr980431o. PubMed DOI
Nardon C., Pettenuzzo N., Fregona D. Gold complexes for therapeutic purposes: An updated patent review (2010–2015) Curr. Med. Chem. 2016;23:3374–3403. doi: 10.2174/0929867323666160504103843. PubMed DOI
Ott I. On the medicinal chemistry of gold complexes as anticancer drugs. Coord. Chem. Rev. 2009;253:1670–1681. doi: 10.1016/j.ccr.2009.02.019. DOI
Zou T., Tung Lum C., Lok C.N., Zhang J.J., Che C.M. Chemical biology of anticancer gold(III) and gold(I) complexes. Chem. Soc. Rev. 2015;44:8786–8801. doi: 10.1039/C5CS00132C. PubMed DOI
University of Kansas . US National Institutes of Health; [(accessed on 23 September 2016)]. Phase I and II Study of Auranofin in Chronic Lymphocytic Leukemia (CLL) Available online: https://clinicaltrials.gov/ct2/show/NCT01419691.
Roder C., Thomson M.J. Auranofin: Repurposing an old drug for a golden new age. Drugs R. D. 2015;15:13–20. doi: 10.1007/s40268-015-0083-y. PubMed DOI PMC
Mayo Clinic Cancer Center . US National Institutes of Health; [(accessed on 23 September 2016)]. Auranofin in Treating Patients with Recurrent Epithelial Ovarian, Primary Peritoneal, or Fallopian Tube Cancer. Available online: https://clinicaltrials.gov/ct2/show/NCT01747798.
Gromer S., Arscott L.D., Williams C.H., Schirmer R.H., Becker K. Human placenta thioredoxin reductase. J. Biol. Chem. 1998;273:20096–20101. doi: 10.1074/jbc.273.32.20096. PubMed DOI
Coffer M.T., Shaw C.F., III, Eidsness M.K., Watkins J.W., II, Elder R.C. Reactions of auranofin and chloro(triethylphosphine)gold with bovine serum albumin. Inorg. Chem. 1986;25:333–339.
Coffer M.T., Shaw C.F., III, Hormann A.L., Mirabelli C.K., Crooke S.T. Thiol competition for Et3PAuS-albumin: A nonenzymatic mechanism for Et3PO formation. J. Inorg. Biochem. 1987;30:177–185. doi: 10.1016/0162-0134(87)80062-4. PubMed DOI
Rubbiani R., Kitanovic I., Alborzinia H., Can S., Kitanovic A., Onambele L.A., Stefanopoulou M., Geldmacher Y., Sheldrick W.S., Wolber G., et al. Benzimidazol-2-ylidene gold(I) complexes are thioredoxin reductase inhibitors with multiple antitumor properties. J. Med. Chem. 2010;53:8608–8618. doi: 10.1021/jm100801e. PubMed DOI
Rubbiani R., Can S., Kitanovic I., Alborzinia H., Stefanopoulou M., Kokoschka M., Mönchgesang S., Sheldrick W.S., Wölfl S., Ott I. Comparative in vitro evaluation of N-heterocyclic carbene gold(I) complexes of the benzimidazolylidene type. J. Med. Chem. 2011;54:8646–8657. doi: 10.1021/jm201220n. PubMed DOI
Wang Y., Liu M., Cao R., Zhang W., Yin M., Xiao X., Liu Q., Huang N. A soluble bis-chelated gold(I) diphosphine compound with strong anticancer activity and low toxicity. J. Med. Chem. 2013;56:1455–1466. doi: 10.1021/jm3009822. PubMed DOI
Messori L., Marchetti L., Massai L., Scaletti F., Guerri A., Landini I., Nobili S., Perrone G., Mini E., Leoni P., et al. Chemistry and biology of two novel gold(I) carbene complexes as prospective anticancer agents. Inorg. Chem. 2014;53:2396–2403. doi: 10.1021/ic401731a. PubMed DOI
Trávníček Z., Štarha P., Vančo J., Šilha T., Hošek J., Suchý P., Pražanová G. Antiinflammatory active gold(I) complexes involving 6-substituted purine derivatives. J. Med. Chem. 2012;55:4568–4579. doi: 10.1021/jm201416p. PubMed DOI
Hošek J., Vančo J., Štarha P., Paráková L., Trávníček Z. Effect of 2-chloro-substitution of adenine moiety in mixed-ligand gold(I) triphenylphosphine complexes on anti-inflammatory activity: The discrepancy between the in vivo and in vitro models. PLoS ONE. 2013;8:e82441. doi: 10.1371/journal.pone.0082441. PubMed DOI PMC
Křikavová R., Hošek J., Vančo J., Hutyra J., Dvořák Z., Trávníček Z. Gold(I)-triphenylphosphine complexes with hypoxanthine-derived ligands: In vitro evaluations of anticancer and anti-inflammatory activities. PLoS ONE. 2014;9:e107373. doi: 10.1371/journal.pone.0107373. PubMed DOI PMC
Vančo J., Gáliková J., Hošek J., Dvořák Z., Paráková L., Trávníček Z. Gold(I) complexes of 9-deazahypoxanthine as selective antitumor and antiinflammatory agents. PLoS ONE. 2014;9:e109901. doi: 10.1371/journal.pone.0109901. PubMed DOI PMC
Domínguez-Martín A., del Pilar Brandi-Blanco M., Matilla-Hernández A., El Bakkali H., Nurchi V.M., González-Pérez J.M., Castiñeiras A., Niclós-Gutiérrez J. Unravelling the versatile metal binding modes of adenine: Looking at the molecular recognition patterns of deaza- and aza-adenines in mixed ligand metal complexes. Coord. Chem. Rev. 2013;257:2814–2838. doi: 10.1016/j.ccr.2013.03.029. DOI
Zhao S.B., Wang S. Luminescence and reactivity of 7-azaindole derivatives and complexes. Chem. Soc. Rev. 2010;39:3142–3156. doi: 10.1039/c001897j. PubMed DOI
Štarha P., Marek J., Trávníček Z. Cisplatin and oxaliplatin derivatives involving 7-azaindole: Structural characterisations. Polyhedron. 2012;33:404–409. doi: 10.1016/j.poly.2011.11.059. DOI
Štarha P., Trávníček Z., Popa A., Popa I., Muchová T., Brabec V. How to modify 7-azaindole to form cytotoxic Pt(II) complexes: Highly in vitro anticancer effective cisplatin derivatives involving halogeno-substituted 7-azaindole. J. Inorg. Biochem. 2012;115:57–63. doi: 10.1016/j.jinorgbio.2012.05.006. PubMed DOI
Štarha P., Hanousková L., Trávníček Z. Organometallic half-sandwich, dichloridoruthenium(II) complexes with 7-azaindoles: Synthesis, characterization and elucidation of their anticancer inactivity against A2780 cell line. PLoS ONE. 2015;10:e0143871. doi: 10.1371/journal.pone.0143871. PubMed DOI PMC
Chan C.K., Guo C.X., Cheung K.K., Li D., Che C.M. A luminescent heterometallic AuI∙∙∙CuI complex. apectroscopic properties and crystal structures of [Au(PPh3)(C7H5N2)] and [{Au(PPh3)(µ-C7H5N2)Cu(µ-C7H5N2)}2] (C7H5N2 = 7-azaindo1ate) J. Chem. Soc. Dalton Trans. 1994:3677–3682. doi: 10.1039/DT9940003677. DOI
Peng S.M., Lin Y.N. Structure of CuII and CoII clusters of 7-azaindolate: [Cu2(C7H5N2)4(dmf)2] (I), [Cu4(OCH3)4(C7H5N2)4(dmf)2] (II) and [Co4O(C7H5N2)6]·CHCl3 (III) Acta Crystallogr. 1986;C42:1725–1731. doi: 10.1107/S0108270186090789. DOI
Nomiya K., Noguchi R., Ohsawa K., Tsuda K., Oda M. Synthesis, crystal structure and antimicrobial activities of two isomeric gold(I) complexes with nitrogen-containing heterocycle and triphenylphosphine ligands, [Au(L)(PPh3)] (HL = pyrazole and imidazole) J. Inorg. Biochem. 2000;78:363–370. doi: 10.1016/S0162-0134(00)00065-9. PubMed DOI
Nakamoto K. Infrared Spectra of Inorganic and Coordination Compounds, Part B, Applications in Coordination, Organometallic, and Bioinorganic Chemistry. Wiley; New York, NY, USA: 1997.
Faggianhi R., Howard-Locck H.E., Lock C.J.L., Turner M.A. The reaction of chloro(triphenylphosphine)gold(I) with 1-methylthymine. Can. J. Chem. 1987;65:1568–1575. doi: 10.1139/v87-264. DOI
Allen F.H. The Cambridge Structural Database: A quarter of a million crystal structures and rising. Acta Crystallogr. B Struct. Sci. 2002;58:380–388. doi: 10.1107/S0108768102003890. PubMed DOI
Brammer L., Bruton E.A., Sherwood P. Understanding the behavior of halogens as hydrogen bond acceptors. Cryst. Growth Des. 2001;1:277–290. doi: 10.1021/cg015522k. DOI
Lu Y., Shi T., Wang Y., Yang H., Yan X., Luo X., Jiang H., Zhu W. Halogen bonding—A novel interaction for rational drug design? J. Med. Chem. 2009;52:2854–2862. doi: 10.1021/jm9000133. PubMed DOI
Roberts J.R., Shaw C.F., III Inhibition of erythrocyte selenium-glutathione peroxidase by auranofin analogues and metabolites. Biochem. Pharmacol. 1998;55:1291–1299. doi: 10.1016/S0006-2952(97)00634-5. PubMed DOI
Graham G.G., Champion G.D., Ziegler J.B. The cellular metabolism and effects of gold complexes. Metal-Based Drugs. 1994;1:395–404. doi: 10.1155/MBD.1994.395. PubMed DOI PMC
Bhabak K.P., Bhuyan B.J., Mugesh G. Bioinorganic and medicinal chemistry: Aspects of gold(I)-protein complexes. Dalton Trans. 2011;40:2099–2111. doi: 10.1039/c0dt01057j. PubMed DOI
Smith W.E., Reglinski J., Hoey S., Brown D.H., Sturrock R.D. Action of sodium gold(I) thiomalate on erythrocyte membrane. Inorg. Chem. 1990;29:5190–5196. doi: 10.1021/ic00351a011. DOI
Salemi G., Gueli M.C., D’Amelio M., Saia V., Mangiapane P., Aridon P., Ragonese P., Lupo I. Blood levels of homocysteine, cysteine, glutathione, folic acid, and vitamin B12 in the acute phase of atherothrombotic stroke. Neurol. Sci. 2009;30:361–364. doi: 10.1007/s10072-009-0090-2. PubMed DOI
Abbehausen C., Peterson E.J., de Paiva R.E.F., Corbi P.P., Formiga A.L.B., Qu Y., Farrell N.P. Gold(I)-phosphine-N-heterocycles: Biological activity and specific (ligand) interactions on the C-Terminal HIVNCp7 zinc finger. Inorg. Chem. 2013;52:11280–11287. doi: 10.1021/ic401535s. PubMed DOI
Guidi F., Landini I., Puglia M., Magherini F., Gabbiani C., Cinellu M.A., Nobili S., Fiaschi T., Bini L., Mini E., et al. Proteomic analysis of ovarian cancer cell responses to cytotoxic gold compounds. Metallomics. 2012;4:307–314. doi: 10.1039/c2mt00083k. PubMed DOI
Barreiro E., Casas J.S., Couce M.D., Sánchez A., Sánchez-Gonzalez A., Sordo J., Varela J.M., Vázquez López E.M. Synthesis, structure and cytotoxicity of triphenylphosphinegold(I) sulfanylpropenoates. J. Inorg. Biochem. 2008;102:184–192. doi: 10.1016/j.jinorgbio.2007.07.034. PubMed DOI
Casas J.S., Castellano E.E., Couce M.D., Crespo O., Ellena J., Laguna A., Sánchez A., Sordo J., Taboada C. Novel gold(I) 7-azacoumarin complex: Synthesis, structure, optical properties, and cytotoxic effects. Inorg. Chem. 2007;46:6236–6238. doi: 10.1021/ic700861a. PubMed DOI
Casas J.S., Castellano E.E., Couce M.D., Ellena J., Sánchez A., Sordo J., Taboada C. A gold(I) complex with a vitamin K3 derivative: Characterization and antitumoral activity. J. Inorg. Biochem. 2006;100:1858–1860. doi: 10.1016/j.jinorgbio.2006.07.006. PubMed DOI
Garcia A., Machado R.C., Grazul R.M., Paz Lopes M.T., Corrêa C.C., Dos Santos H.F., de Almeida M.V., Silva H. Novel antitumor adamantane–azole gold(I) complexes as potential inhibitors of thioredoxin reductase. J. Biol. Inorg. Chem. 2016;21:275–292. doi: 10.1007/s00775-016-1338-y. PubMed DOI
Muchová T., Prachařová J., Štarha P., Olivová R., Vrána O., Benešová B., Kašpárková J., Trávníček Z., Brabec V. Insight into the toxic effects of cis-dichloridoplatinum(II) complexes containing 7-azaindole halogeno derivatives in tumor cells. J. Biol. Inorg. Chem. 2013;18:579–589. doi: 10.1007/s00775-013-1003-7. PubMed DOI
Fan C., Zheng W., Fu X., Li X., Wong Y.S., Chen T. Enhancement of auranofin-induced lung cancer cell apoptosis by selenocystine, a natural inhibitor of TrxR1 in vitro and in vivo. Cell Death Dis. 2014;5:e1191. doi: 10.1038/cddis.2014.132. PubMed DOI PMC
Gandin V., Fernandes A.P., Rigobello M.P., Dani B., Sorrentino F., Tisato F., Björnstedt M., Bindoli A., Sturaro A., Rella R., et al. Cancer cell death induced by phosphine gold(I) compounds targeting thioredoxin reductase. Biochem. Pharmacol. 2010;79:90–101. doi: 10.1016/j.bcp.2009.07.023. PubMed DOI
Nakaya A., Sagawa M., Muto A., Uchida H., Ikeda Y., Kizaki M. The gold compound auranofin induces apoptosis of human multiple myeloma cells through both down-regulation of STAT3 and inhibition of NF-κB activity. Leukemia Res. 2011;35:243–249. doi: 10.1016/j.leukres.2010.05.011. PubMed DOI
Mann F.G., Wells A.F., Purdie D. The constitution of complex metallic salts: Part IV. The constitution of the phosphine and arsine derivatives of silver and aurous halides. The coordination of the coordinated argentous and aurous complex. J. Chem. Soc. 1937:1828–1836. doi: 10.1039/jr9370001828. DOI
Bruker . Apex3. Bruker AXS Inc.; Madison, WI, USA: 2015.
Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC
Brandenburg K. Diamond Version 4.0.3. Crystal Impact GbR; Bonn, Germany: 2015.
Macrae C.F., Bruno I.J., Chisholm J.A., Edgington P.R., McCabe P., Pidcock E., Rodriguez-Monge L., Taylor R., van de Streek J., Wood P.A. Mercury CSD 2.0—New features for the visualization and investigation of crystal structures. J. Appl. Cryst. 2008;41:466–470. doi: 10.1107/S0021889807067908. DOI