Between the Balkans and the Baltic: Phylogeography of a Common Vole Mitochondrial DNA Lineage Limited to Central Europe
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27992546
PubMed Central
PMC5161492
DOI
10.1371/journal.pone.0168621
PII: PONE-D-16-35601
Knihovny.cz E-zdroje
- MeSH
- Arvicolinae genetika MeSH
- Bayesova věta MeSH
- cytochromy b genetika MeSH
- fylogeneze MeSH
- fylogeografie MeSH
- mikrosatelitní repetice MeSH
- mitochondriální DNA genetika MeSH
- sekvenční analýza DNA MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- cytochromy b MeSH
- mitochondriální DNA MeSH
The common vole (Microtus arvalis) has been a model species of small mammal for studying end-glacial colonization history. In the present study we expanded the sampling from central and eastern Europe, analyzing contemporary genetic structure to identify the role of a potential 'northern glacial refugium', i.e. a refugium at a higher latitude than the traditional Mediterranean refugia. Altogether we analyzed 786 cytochrome b (cytb) sequences (representing mitochondrial DNA; mtDNA) from the whole of Europe, adding 177 new sequences from central and eastern Europe, and we conducted analyses on eight microsatellite loci for 499 individuals (representing nuclear DNA) from central and eastern Europe, adding data on 311 new specimens. Our new data fill gaps in the vicinity of the Carpathian Mountains, the potential northern refugium, such that there is now dense sampling from the Balkans to the Baltic Sea. Here we present evidence that the Eastern mtDNA lineage of the common vole was present in the vicinity of this Carpathian refugium during the Last Glacial Maximum and the Younger Dryas. The Eastern lineage expanded from this refugium to the Baltic and shows low cytb nucleotide diversity in those most northerly parts of the distribution. Analyses of microsatellites revealed a similar pattern but also showed little differentiation between all of the populations sampled in central and eastern Europe.
Department of Ecology Institute of Biology University in Pécs Pécs Hungary
Department of Natural Sciences National Museums Scotland Edinburgh United Kingdom
Mammal Research Institute Polish Academy of Sciences Białowieża Poland
Nature Conservation Agency of the Czech Republic Prague Czech Republic
Vertebrate Department Slovenian Museum of Natural History Ljubljana Slovenia
Zobrazit více v PubMed
Avise JC. Phylogeography: The History and Formation of Species Cambridge (MA): Harvard University Press, 2000.
Webb T, Bartlein PJ. Global changes during the last 3 million years: climatic controls and biotic responses. Annu Rev Ecol Evol Syst. 1992; 23: 141–173.
Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B et al. The Last Glacial Maximum. Science. 2009; 325: 710–714. 10.1126/science.1172873 PubMed DOI
Wysota W, Lankauf KR, Szmańda J, Chruścińska A, Oczkowski HL, Przegiętka KR. Chronology of the Vistulian (Weichselian) glacial events in the lower Vistula region, middle-north Poland. Geochronometria. 2002; 21: 137–142.
Wysota W, Molewski P, Sokołowski RJ. Record of the Vistula ice lobe advances in the Late Weichselian glacial sequence in north-central Poland. Quat Int. 2009; 207: 26–41.
Bilton DT, Mirol PM, Mascheretti S, Fredga K, Zima J, Searle JB. Mediterranean Europe as an area of endemism for small mammals rather than a source of northwards postglacial colonization. Proc R Soc Lond B. 1998; 265: 1219–1226. PubMed PMC
Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF. Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol. 1998; 7: 453–464. PubMed
Hewitt GM. Post-glacial re-colonization of European biota. Biol J Linn Soc. 1999; 68: 87–112.
Kotlík P, Deffontaine V, Mascheretti S, Zima J, Michaux JR, Searle JB. A northern glacial refugium for bank voles Clethrionomys glareolus. Proc Natl Acad Sci USA. 2006; 103: 14860–14864. 10.1073/pnas.0603237103 PubMed DOI PMC
Wójcik JM, Kawałko A, Marková S, Searle JB, Kotlík P. Phylogeographic signatures of northward post-glacial colonization from high-latitude refugia: a case study of bank voles using museum specimens. J Zool. 2010; 281: 249–262.
Marková AK. Late Pleistocene mammal fauna of the Russian Plain In: Velichko AA, Wright HE Jr, Barnosky CW, editors. Late Quaternary Environments of the Soviet Union. London: Longman; 1984. pp. 209–222.
Marková AK. Small mammals from Palaeolithic sites of the Crimea. Quat Int. 2011; 231: 22–27.
Stewart JR, Lister AM. Cryptic northern refugia and the origins of the modern biota. Trends Ecol Evol. 2001; 16:608–613.
Stewart JR, Lister AM, Barnes I, Dalén L. Refugia revisited: individualistic responses of species in space and time. Proc R Soc B. 2010; 277: 661–671. 10.1098/rspb.2009.1272 PubMed DOI PMC
McDevitt AD, Vega R, Rambau RV, Yannic G, Herman JS, Hayden TJ, Searle JB. Colonization of Ireland: revisiting ‘the pygmy shrew syndrome’ using mitochondrial, Y chromosomal and microsatellite markers. Heredity. 2011; 107: 548–557. 10.1038/hdy.2011.41 PubMed DOI PMC
McDevitt AD, Zub K, Kawałko A, Oliver MK, Herman JS, Wójcik JM. Climate and refugial origin influence the mitochondrial lineage distribution of weasels Mustela nivalis in a phylogeographic suture zone. Biol J Linn Soc. 2012; 106: 57–69.
Yu Z, Eicher U. Three amphi-Atlantic century-scale cold events during the Bølling-Allerød warm period. Géogr Phys Quat. 2001; 55: 171–179.
Lokrantz H, Sohlenius G. Ice marginal fluctuations during the Weichselian glaciation in Fennoscandia, a literature review. Technical Report TR-06-36. Stockholm: Svensk Kärnbränslehantering; 2006.
Mix AC, Bard E, Schneider R. Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quat Sci Rev. 2001; 20: 627–657.
Tzedakis PC, Emerson BC, Hewitt GM. Cryptic or mystic? Glacial tree refugia in northern Europe. Trends Ecol Evol. 2013; 28: 696–704. 10.1016/j.tree.2013.09.001 PubMed DOI
Carlson AE. The Younger Dryas climate event In: Elias AS, Mock CJ, editors. The Encyclopedia of Quaternary Science. Amsterdam: Elsevier; 2013. pp. 126–134.
Rasmussen SO, Andersen KK, Svensson AM, Steffensen JP, Vinther BM, Clausen HB et al. A new Greenland ice core chronology for the last glacial termination. J Geophys Res. 2006; 111, D06102.
Meyer MN, Golenishchev FN, Bulatova NS, Artobolevsky GV. On distribution of two Microtus arvalis chromosomal forms in European Russia. Zoologiskii Zhurnal. 1997; 76: 487–493 (in Russian).
Haynes S, Jaarola M, Searle JB. Phylogeography of the common vole Microtus arvalis with particular emphasis on the colonization of the Orkney archipelago. Mol Ecol. 2003; 12: 951–956. PubMed
Bulatova NS, Potapov SG, Lavrenchenko LA. Genomic versus chromosomal polytypy in studies of mitochondrial and nuclear DNA markers in the Microtus arvalis group. Russ J Genet. 2010; 46: 586–594. PubMed
Herman JS, McDevitt AD, Kawałko A, Jaarola M, Wójcik JM, Searle JB. Land-bridge calibration of molecular clocks and the post-glacial colonization of Scandinavia by the Eurasian field vole Microtus agrestis. PLoS One 2014; 9: e103949 10.1371/journal.pone.0103949 PubMed DOI PMC
Paupério J, Herman JS, Melo-Ferreira J, Jaarola M, Alves PC, Searle JB. Cryptic speciation in the field vole: a multilocus approach confirms three highly divergent lineages in Eurasia. Mol Ecol. 2012; 21: 6015–6032. 10.1111/mec.12024 PubMed DOI
Martínková N, Barnett R, Cucchi T, Struchen R, Pascal M, Pascal M, Fischer MC, Higham T, Brace S, Ho SYW, Quéré JP, O’Higgins P, Excoffier L, Heckel G, Hoelzel AR, Dobney KM, Searle JB. Divergent evolutionary processes associated with colonization of offshore islands. Mol Ecol. 2013; 22: 5205–5220. 10.1111/mec.12462 PubMed DOI PMC
Bužan EV, Förster DW, Searle JB, Kryštufek B. A new cytochrome b phylogroup of the common vole Microtus arvalis endemic to the Balkans and its implications for the evolutionary history of the species. Biol J Linn Soc. 2010; 100: 788–796.
Stojak J, McDevitt AD, Herman JS, Searle JB, Wójcik JM. Post-glacial colonization of eastern Europe from the Carpathian refugium: evidence from mitochondrial DNA of the common vole Microtus arvalis. Biol J Linn Soc. 2015; 115: 927–939.
Heckel G, Burri R, Fink S, Desmet JF, Excoffier L. Genetic structure and colonization processes in European populations of the common vole Microtus arvalis. Evolution. 2005; 59: 2231–2242. PubMed
Pazonyi P. Mammalian ecosystem dynamics in the Carpathian Basin during the last 27000 years. Palaeogeog Palaeoclim Palaeoecol. 2004; 212:295–314.
Sommer RS, Nadachowski A. Glacial refugia of mammals in Europe: evidence from fossil records. Mamm Rev. 2006; 36: 251–265.
Stojak J, Wójcik JM, Ruczyńska I, Searle JB, McDevitt AD. Contrasting and congruent patterns of genetic structuring in two Microtus vole species using museum specimens. Mamm Res. 2016; 61: 141–152.
Zagorodnyuk I, Henttonen H, Amori G, Hutterer R, Kryštufek B, Yigit N et al. Microtus levis. IUCN Red List of Threatened Species. Version 2014.3. International Union for Conservation of Nature; 2008. Retrieved 28 July 2016.
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999; 41: 95–98.
Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009; 25: 1451–1452. 10.1093/bioinformatics/btp187 PubMed DOI
Degli Esposti M, de Vries S, Crimi M, Ghelli A, Patarnello T, Meyer A. Mitochondrial cytochrome b: evolution and structure of the protein. Biochim Biophys Acta. 1993; 1143: 243–271. PubMed
Bandelt HJ, Forster P, Rohl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 1999; 16: 37–48. PubMed
Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST. Mol Biol Evol. 2012; 29: 1969–1973. 10.1093/molbev/mss075 PubMed DOI PMC
Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006; 4: e88 10.1371/journal.pbio.0040088 PubMed DOI PMC
Drummond AJ, Rambaut A, Shapiro B, Pybus OG. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol. 2005; 22: 1185–1192. 10.1093/molbev/msi103 PubMed DOI
Baele G, Lemey P, Vansteelandt S. Make the most of your samples: Bayes factor estimators for high-dimensional models of sequence evolution. BMC Bioinformatics. 2013; 14: 85 10.1186/1471-2105-14-85 PubMed DOI PMC
Kass RE, Raftery AE. Bayes factors. J Am Stat Assoc. 1995; 90: 773–795.
Rambaut A, Drummond AJ. Tracer, Version 1.4 Oxford: University of Oxford; 2007.
Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genetic analyses under Linux and Windows. Mol Ecol Res. 2010; 10: 564–567. PubMed
Tajima F. The effect of change in population size on DNA polymorphism. Genetics. 1989; 123: 453–464. PubMed PMC
Fu YX. Statistical tests of neutrality of mutations against population growth hitchhiking and background selection. Genetics. 1997; 147: 915–925. PubMed PMC
Rogers AR, Harpending H. Population-growth makes waves in the distribution of pairwise genetic distances. Mol Biol Evol. 1992; 9: 552–569. PubMed
Frantz AC, McDevitt AD, Pope LC, Kochan J, Davison J, Clements CF et al. Revisiting the phylogeography and demography of European badgers (Meles meles) based on broad sampling, multiple markers and simulations. Heredity. 2014; 113: 443–453. 10.1038/hdy.2014.45 PubMed DOI PMC
Rogers AR. Genetic evidence for a Pleistocene population explosion. Evolution. 1995; 49: 608–615. PubMed
Schneider S, Excoffier L. Estimation of demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics. 1999; 152: 1079–1089. PubMed PMC
Schenekar T, Weiss S. High rate of calculation errors in mismatch distribution analysis results in numerous false inferences of biological importance. Heredity. 2011; 107: 511–512. 10.1038/hdy.2011.48 PubMed DOI PMC
Goudet J. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Department of Ecology and Evolution, University of Lausanne, Switzerland. 2011. Available at: http://www2.unil.ch/popgen/softwares/fstat.htm.
van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Res. 2004; 4: 535–538.
Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984; 38: 1358–1370. PubMed
Rice WR. Analyzing tables of statistical tests. Evolution. 1989; 43: 223–225. PubMed
Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967; 27: 209–220. PubMed
Jensen JL, Bohonak AJ, Kelley ST. Isolation by distance, web service. BMC Genetics. 2005; 6: 13 Available: v.3.23 http://ibdws.sdsu.edu/ 10.1186/1471-2156-6-13 PubMed DOI PMC
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000; 155: 945–959. PubMed PMC
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005; 14: 2611–2620. 10.1111/j.1365-294X.2005.02553.x PubMed DOI
Earl DA, vonHoldt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res. 2012; 4: 359–361.
Vähä JP, Primmer CR. Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol Ecol. 2006; 15: 63–72. 10.1111/j.1365-294X.2005.02773.x PubMed DOI
Jakobsson M, Rosenberg NA. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007; 23: 1801–1806. 10.1093/bioinformatics/btm233 PubMed DOI
Rosenberg NA. Distruct: a program for the graphical display of population structure. Mol Ecol Notes. 2004; 4: 137–138.
Jombart T. A tutorial for the spatial Analysis of Principal Components (sPCA) using adegenet 2.0.0. 2015.
RStudio: Integrated development environment for R (Version 0.96.122). Computer software. Boston: MA; 2012.
Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics. 2010; 11:94 10.1186/1471-2156-11-94 PubMed DOI PMC
Irwin DM, Kocher TD, Wilson AC. Evolution of the cytochrome b gene of mammals. J Mol Evol. 1991; 32: 128–144. PubMed
Zhang DX, Hewitt GM. Nuclear integrations: challenges for mitochondrial DNA markers. Trends Ecol Evol. 1996; 11: 247–251. PubMed
Gaziev AI, Shaikhaev GO. Nuclear mitochondrial pseudogenes. Mol Biol. 2010; 44: 358–368. PubMed
Tougard C, Montuire S, Volobouev V, Markova E, Contet J, Aniskin V, Quéré JP. Exploring phylogeography and species limits in the Altai vole (Rodentia: Cricetidae). Biol J Linn Soc. 2013; 108: 434–452.
Braaker S, Heckel G. Transalpine colonization and partial phylogeographic erosion by dispersal in the common vole (Microtus arvalis). Mol Ecol. 2009; 18: 2518–2531. 10.1111/j.1365-294X.2009.04189.x PubMed DOI
Beysard M, Heckel G. Structure and dynamics of hybrid zones at different stages of speciation in the common vole (Microtus arvalis). Mol Ecol. 2014; 23: 673–687. 10.1111/mec.12613 PubMed DOI
Wielstra B, Babik W, Arntzen JW. The crested newt Triturus cristatus recolonized temperate Eurasia from an extra-Mediterranean glacial refugium. Biol J Linn Soc. 2015; 114: 574–587.
Valdiosera CE, García N, Anderung C, Dalén L, Crégut-Bonnoure E, Kahlke RD et al. Staying out in the cold: glacial refugia and mitochondrial DNA phylogeography in ancient European brown bears. Mol Ecol. 2007; 16: 5140–5148. 10.1111/j.1365-294X.2007.03590.x PubMed DOI
Petit R, Aguinagalde I, de Beaulieu JL, Bittkau C, Brewer S, Cheddadi R et al. Glacial refugia: hotspots but not melting pots of genetic diversity. Science. 2003; 300: 1563–1565. 10.1126/science.1083264 PubMed DOI
Canestrelli D, Bisconti R, Sacco F, Nascetti G. What triggers the rising of an intraspecific biodiversity hotspot? Hints from the agile frog. Sci Rep. 2014; 4: 5042 10.1038/srep05042 PubMed DOI PMC
de Bruyn M, Hoelzel AR, Carvalho GR, Hofreiter M. Faunal histories from Holocene ancient DNA. Trends Ecol Evol. 2011; 26: 405–413. 10.1016/j.tree.2011.03.021 PubMed DOI
Brace S, Palkopoulou E, Dalén L, Lister AM, Miller R, Otte M et al. Serial population extinctions in a small mammal indicate Late Pleistocene ecosystem instability. Proc Natl Acad Sci USA. 2012; 109: 20532–20536. 10.1073/pnas.1213322109 PubMed DOI PMC
Lagerholm VK, Sandoval-Castellanos E, Ehrich D, Abramson NI, Nadachowski A, Kalthoff DC et al. On the origin of the Norwegian lemming. Mol Ecol. 2014; 23: 2060–2071. 10.1111/mec.12698 PubMed DOI
Deffontaine V, Libois R, Kotlík P, Sommer R, Nieberding C, Paradis E et al. Beyond the Mediterranean peninsulas: evidence of central European glacial refugia for a temperate forest mammal species, the bank vole (Clethrionomys glareolus). Mol Ecol. 2005; 14: 1727–1739. 10.1111/j.1365-294X.2005.02506.x PubMed DOI
Starkel L. Evolution of the Vistula river valley since the last glaciation till present. Warsaw: Polish Academy of Sciences Stanisław Leszczycki Institute of Geography and Spatial Organization. Monographies 2; 2001 (in Polish with English summary).
Starkel L. Environmental changes at the Younger Dryas–Preboreal transition and during the early Holocene: some distinctive aspects in central Europe. The Holocene. 1991; 1: 234–242.
Mráz P, Ronikier M. Biogeography of the Carpathians: evolutionary and spatial facets of biodiversity. Biol J Linn Soc. 2016; 119:528–559.
Wójcik JM. Chromosome races of the common shrew Sorex araneus in Poland: a model of karyotype evolution. Acta Theriol. 1993; 38: 315–338.