A new formulation of Bacillus thuringiensis: UV protection and sustained release mosquito larvae studies
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28004743
PubMed Central
PMC5177894
DOI
10.1038/srep39425
PII: srep39425
Knihovny.cz E-zdroje
- MeSH
- algináty farmakologie MeSH
- Bacillus thuringiensis fyziologie MeSH
- bakteriální proteiny farmakologie MeSH
- biologická kontrola škůdců metody MeSH
- biologická ochrana farmakologie MeSH
- Culicidae účinky léků MeSH
- farmaceutická chemie metody MeSH
- kyselina glukuronová farmakologie MeSH
- kyseliny hexuronové farmakologie MeSH
- larva účinky léků MeSH
- léky s prodlouženým účinkem farmakologie MeSH
- moskyti - kontrola metody MeSH
- ultrafialové záření MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- algináty MeSH
- bakteriální proteiny MeSH
- biologická ochrana MeSH
- kyselina glukuronová MeSH
- kyseliny hexuronové MeSH
- léky s prodlouženým účinkem MeSH
Persistence of Bacillus thuringiensis is an important factor in determining the success of this product as a pest control agent. In this report we present the development of a highly active mosquitocidal formulation with high resistance to UV. LLP29-M19 strain of Bt, selected by repeated exposure to UV was found to be highly resistant to UV. The product was optimized and the methods used were statistically analyzed. Using single-factor experiments it was determined that the optimal concentration of sodium alginate, CaCl2 and hollow glass beads in the formulation were 1.0%, 2.0% and 3.5%, respectively. Plackett-Burman design was used to screen the interaction of the three factors, CaCl2, sodium alginate and hollow glass beads in the sustained-release formulation. The best combined concentration and mutual effects of the three factors were optimized by response surface methodology. The results showed that the most favorable composition was sodium alginate 0.78%, CaCl2 4.52%, hollow glass bead 3.12%, bacterial powder 3.0%, melanin 0.015%, sodium benzoate 0.2%, and mouse feed 0.5%, resulting in the immobilization time of 4.5 h, at which time the corrected sustained-release virulence rose 2391.67 fold, which was 6.07-fold higher than the basic formulation and deviated only 5.0% from the value predicted by RSM.
Zobrazit více v PubMed
Wang P. et al.. Complete genome sequence of Bacillus thuringiensis YBT-1518, a typical strain with high toxicity to nematodes. J. Biotechnol. 171, 1–2 (2014). PubMed
Bravo A., Likitvivatanavong S., Gill S. S. & Soberon M. Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 41, 423–431, doi: 10.1016/j.ibmb.2011.02.006 (2011). PubMed DOI PMC
Wu S. et al.. Use of Spent Mushroom Substrate for Production of Bacillus thuringiensis by Solid-State Fermentation. J. Econ. Entomol. 107, 137–143 (2014). PubMed
Ignoffo C. M. & Garcia C. UV-photoinactivation of cells and spores of Bacillus thuringiensis and effects of peroxidase on inactivation. Environ. Entomol. 7, 270–272 (1978).
Pozsgay M., Fast P., Kaplan H. & Carey P. The effect of sunlight on the protein crystals from Bacillus thuringiensis var. kurstaki HD1 and NRD12: a Raman spectroscopic study. J. Invertebr. Pathol. 50, 246–253 (1987).
Pusztai M. et al.. The mechanism of sunlight-mediated inactivation of Bacillus thuringiensis crystals. Biochem. J. 273, 43–47 (1991). PubMed PMC
Zhang J. T., Yan J. P., Zheng D. S., Sun Y. J. & Yuan Z. M. Expression of mel gene improves the UV resistance of Bacillus thuringiensis. J. Appl. Microbiol. 105, 151–157 (2008) PubMed
Brar S. K., Verma M., Tyagi R. & Valéro J. Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides. Process Biochem. 41, 323–342 (2006a).
Clark F. M., Offit P. A. & Speaker T. J. Aqueous solven encapsulation method, apparatus and microcapsules. US Patent 6, 531, 156 y (2003)
Ifoulis A. & Savopoulou-Soultani M. Biological control of Lobesia botrana (Lepidoptera: Tortricidae) larvae by using different formulations of Bacillus thuringiensis in 11 vine cultivars under field conditions. J. Econ. Entomol. 97, 340–343 (2004). PubMed
Behle R., McGuire M. & Shasha B. Extending the residual toxicity of Bacillus thuringiensis with casein-based formulations. J. Econ. Entomol. 89, 1399–1405 (1996).
Behle R., McGulRe M., Gillespie R. & Shasha B. Effects of alkaline gluten on the insecticidal activity of Bacillus thuringiensis. J. Econ. Entomol. 90, 354–360 (1997).
Bohm H. A. & Friend D. R., inventors; Lim Technology Laboratories, Inc., assignee. Microencapsulated insecticidal pathogens. United States patent US 4,844,896. 1989 July 4.
Brar S. K., Verma M., Tyagi R., Valéro J. & Surampalli R. Screening of different adjuvants for wastewater/wastewater sludge-based Bacillus thuringiensis formulations. J. Econ. Entomol. 99, 1065–1079 (2006b). PubMed
McGUIRE M. R., Streett D. A. & Shasha B. S. Evaluation of starch encapsulation for formulation of grasshopper (Orthoptera: Acrididae) entomopoxviruses. J. Econ. Entomol. 84, 1652–1656 (1991).
Smith K. L. & Herbig S. H., inventors; Bend Research, Inc., assignee. Labile insecticide compositions. United States patent US 5, 750, 126. 1998 May 12.
Tamez-Guerra P. et al.. Sprayable granule formulations for Bacillus thuringiensis. J. Econ. Entomol. 89, 1424–1430 (1996).
Koch S., Schwinger C., Kressler J., Heinzen C. & Rainov N. Alginate encapsulation of genetically engineered mammalian cells: comparison of production devices, methods and microcapsule characteristics. J. Microencaps. 20, 303–316 (2003). PubMed
Chan L., Lee H. & Heng P. Production of alginate microspheres by internal gelation using an emulsification method. Int. J. Pharm. 242, 259–262 (2002). PubMed
Knezevic Z. et al.. Alginate-immobilized lipase by electrostatic extrusion for the purpose of palm oil hydrolysis in lecithin/isooctane system. Process Biochem. 38, 313–318 (2002).
Pajić-Lijaković I., Nedović V. & Bugarski B. Nonlinear dynamics of brewing yeast cell growth in alginate micro-beads. Materials science forum 2006. Trans Tech Publ. 519–524 (2006).
Zhang L. et al.. A novel mosquitocidal Bacillus thuringiensis strain LLP29 isolated from the phylloplane of Magnolia denudata. Microbiol. Res. 165, 133–141 (2010). PubMed
Prabakaran G. & Hoti S. Immobilization in alginate as a technique for the preservation of Bacillus thuringiensis var. israelensis for long-term preservation. J. Microbiol. Methods 72, 91–94 (2008). PubMed
Cavados C. et al.. Identification of entomopathogenic Bacillus isolated from Simulium (Diptera: Simuliidae) larvae and adults. Mem Inst Oswaldo Cruz. 96, 1017–1021(2001). PubMed
Wu S. et al.. Pretreatment of spent mushroom substrate for enhancing the conversion of fermentable sugar. Bioresour. Technol. 148, 596–600 (2013). PubMed
Fan Y. H., Pereira R. M., Kilic E., Gasella G. & Keyhani N. O. Pyrokinin β-neuropeptide affects necrophoretic behavior in fire ants (S. invicta), expression of β-NP in a mycoinsecticide increases its virulence. PLoS ONE. 7, e 26924 (2012). PubMed PMC
Annadurai G., Ling L. Y. & Lee J. F. Statistical optimization of medium components and growth conditions by response surface methodology to enhance phenol degradation by Pseudomonas putida. J. Hazard. Mater. 151, 171–178 (2008). PubMed
Zhou J. et al.. Optimization of phenol degradation by Candida tropicalis Z-04 using Plackett-Burman design and response surface methodology. J. Environ. Sci. (China) 23, 22–30 (2011). PubMed
Liu S.-B. et al.. Optimization of fermentation conditions and rheological properties of exopolysaccharide produced by deep-sea bacterium Zunongwangia profunda SM-A87. PLoS One 6, e26825 (2011). PubMed PMC
Plackett R. L. & Burman J. P. The design of optimum multifactorial experiments. Biometrika. 305–325 (1946).
Siegwart M. et al.. Resistance to bio-insecticides or how to enhance their sustainability: a review. Frontiers in Plant Science 6, 381 (2015). PubMed PMC
Chen Y. H., Deng Y. Y., Wang J. H., Cai J. & Ren G. X. Characterization of melanin produced by a wild-type strain of Bacillus thuringiensis. J. Gen. Appl. Microbiol., 50, 183–188 (2004). PubMed
Sansinenea E., Salazar F., Ramirez M. & Ortiz A. An ultra-violet tolerant wild-type strain of melanin-producing Bacillus thuringiensis. Jundishapur J Microbiol. 8, e20910 (2015). PubMed PMC
Kohl J., Gerlagh M., De Haas B. & Krijger M. Biological control of Botrytis cinerea in cyclamen with Ulocladium atrum and Gliocladium roseum under commercial growing conditions. Phytopathology 88, 568–575 (1998). PubMed
Leggett M., Leland J., Kellar K. & Epp B. Formulation of microbial biocontrol agents - an industrial perspective. Can. J. Plant Pathol. 33, 101–107 (2011).
Ravensberg W. A Roadmap to the Successful Development and commercialization of microbial pest control products for control of Arthropods. Progress in Biological Control. Springer Dordrecht Heidelberg London: New York, 1–383, doi: 10.1007/978-94-007-0437-4 (2011). DOI
Myasnik M. et al.. Comparative sensitivity to UV-B radiation of two Bacillus thuringiensis subspecies and other Bacillus sp. Curr. Microbiol., 43, 140–143(2001). PubMed