An Alteration of Lymphocytes Subpopulations and Immunoglobulins Levels in Patients with Diabetic Foot Ulcers Infected Particularly by Resistant Pathogens
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28050566
PubMed Central
PMC5165150
DOI
10.1155/2016/2356870
Knihovny.cz E-zdroje
- MeSH
- adaptivní imunita MeSH
- antibakteriální látky terapeutické užití MeSH
- bakteriální infekce krev farmakoterapie imunologie MeSH
- diabetická noha krev farmakoterapie imunologie MeSH
- dospělí MeSH
- imunoglobuliny krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- lymfocyty imunologie MeSH
- počet lymfocytů MeSH
- přirozená imunita MeSH
- průřezové studie MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- imunoglobuliny MeSH
The aim of our study was to analyse immune abnormalities in patients with chronic infected diabetic foot ulcers (DFUs) especially those infected by resistant microorganisms. Methods. 68 patients treated in our foot clinic for infected chronic DFUs with 34 matched diabetic controls were studied. Patients with infected DFUs were subdivided into two subgroups according to the antibiotic sensitivity of causal pathogen: subgroup S infected by sensitive (n = 50) and subgroup R by resistant pathogens (n = 18). Selected immunological markers were compared between the study groups and subgroups. Results. Patients with infected chronic DFUs had, in comparison with diabetic controls, significantly reduced percentages (p < 0.01) and total numbers of lymphocytes (p < 0.001) involving B lymphocytes (p < 0.01), CD4+ (p < 0.01), and CD8+ T cells (p < 0.01) and their naive and memory effector cells. Higher levels of IgG (p < 0.05) including IgG1 (p < 0.001) and IgG3 (p < 0.05) were found in patients with DFUs compared to diabetic controls. Serum levels of immunoglobulin subclasses IgG2 and IgG3 correlated negatively with metabolic control (p < 0.05). A trend towards an increased frequency of IgG2 deficiency was found in patients with DFUs compared to diabetic controls (22% versus 15%; NS). Subgroup R revealed lower levels of immunoglobulins, especially of IgG4 (p < 0.01) in contrast to patients infected by sensitive bacteria. The innate immunity did not differ significantly between the study groups. Conclusion. Our study showed changes mainly in the adaptive immune system represented by low levels of lymphocyte subpopulations and their memory effector cells, and also changes in humoral immunity in patients with DFUs, even those infected by resistant pathogens, in comparison with diabetic controls.
Zobrazit více v PubMed
Haynes B. F., Fauci A. S. Disorders of the immune system, connective tissue, and joints. In: Braunwald E., Fauci A. S., Kasper D. L., et al., editors. Principles of Internal Medicine, Harrison's. 15th. McGraw-Hill; 2001. pp. 1805–1830.
Heyman B. Feedback regulation by IgG antibodies. Immunology Letters. 2003;88(2):157–161. doi: 10.1016/s0165-2478(03)00078-6. PubMed DOI
Janeway Ch. A., Travers P., Hunt S., et al. Immunobiology. New York, NY, USA: Churchill Livingstone; 1997.
Youngblood B., Hale J. S., Ahmed R. T-cell memory differentiation: insights from transcriptional signatures and epigenetics. Immunology. 2013;139(3):277–284. doi: 10.1111/imm.12074. PubMed DOI PMC
Björkander J., Bengtsson U., Oxelius V. A., Hanson L. A. Symptoms in patients with lowered levels of IgG subclasses, with or without IgA deficiency, and effects of immunoglobulin prophylaxis. Monographs in Allergy. 1986;20:157–163. PubMed
Morell A. Clinical relevance of IgG subclass deficiencies. Annales de Biologie Clinique. 1994;52(1):49–52. PubMed
Kaveri S. V. Intravenous immunoglobulin: exploiting the potential of natural antibodies. Autoimmunity Reviews. 2012;11(11):792–794. doi: 10.1016/j.autrev.2012.02.006. PubMed DOI
Ayilavarapu S., Kantarci A., Fredman G., et al. Diabetes-induced oxidative stress is mediated by Ca2+-independent phospholipase A2 in neutrophils. The Journal of Immunology. 2010;184(3):1507–1515. doi: 10.4049/jimmunol.0901219. PubMed DOI PMC
Fejfarová V., Jirkovská A., Lupínková J., et al. Effect of acute hyperglycemia and/or hyperinsulinemia on polymorphonuclear functions in healthy subjects. Metabolism: Clinical and Experimental. 2006;55(6):811–818. doi: 10.1016/j.metabol.2006.02.007. PubMed DOI
Koh G. C. K. W., Peacock S. J., van der Poll T., Wiersinga W. J. The impact of diabetes on the pathogenesis of sepsis. European Journal of Clinical Microbiology and Infectious Diseases. 2012;31(4):379–388. doi: 10.1007/s10096-011-1337-4. PubMed DOI PMC
Yano H., Kinoshita M., Fujino K., et al. Insulin treatment directly restores neutrophil phagocytosis and bactericidal activity in diabetic mice and thereby improves surgical site Staphylococcus aureus infection. Infection and Immunity. 2012;80(12):4409–4416. doi: 10.1128/iai.00787-12. PubMed DOI PMC
Osar Z., Samanci T., Demirel G. Y., Damci T., Ilkova H. Nicotinamide effects oxidative burst activity of neutrophils in patients with poorly controlled type 2 diabetes mellitus. Experimental Diabesity Research. 2004;5(2):155–162. doi: 10.1080/15438600490424244. PubMed DOI PMC
Serlenga E., Garofalo A. R., De Pergola G., Ventura M. T., Tortorella C., Antonaci S. Polymorphonuclear cell-mediated phagocytosis and superoxide anion release in insulin-dependent diabetes mellitus. Cytobios. 1993;74(298-299):189–195. PubMed
Wilson R. M., Reeves W. G. Neutrophil phagocytosis and killing in insulin-dependent diabetes. Clinical & Experimental Immunology. 1986;63(2):478–484. PubMed PMC
Daoud A. K., Tayyar M. A., Fouda I. M., et al. Effects of diabetes mellitus vs. in vitro hyperglycemia on select immune cell functions. Journal of Immunotoxicology. 2009;6(1):36–41. doi: 10.1080/15476910802604564. PubMed DOI
Nielson C. P., Hindson D. A. Inhibition of polymorphonuclear leukocyte respiratory burst by elevated glucose concentrations in vitro. Diabetes. 1989;38(8):1031–1035. doi: 10.2337/diab.38.8.1031. PubMed DOI
Salman F., Erten G., Unal M., et al. Effect of acute maximal exercise on lymphocyte subgroups in type 1 diabetes. Acta Physiologica Hungarica. 2008;95(1):77–86. doi: 10.1556/aphysiol.95.2008.1.5. PubMed DOI
Mohammed N., Tang L., Jahangiri A., De Villiers W., Eckhardt E. Elevated IgG levels against specific bacterial antigens in obese patients with diabetes and in mice with diet-induced obesity and glucose intolerance. Metabolism: Clinical and Experimental. 2012;61(9):1211–1214. doi: 10.1016/j.metabol.2012.02.007. PubMed DOI PMC
Martins-Mendes D., Monteiro-Soares M., Boyko E. J., et al. The independent contribution of diabetic foot ulcer on lower extremity amputation and mortality risk. Journal of Diabetes and Its Complications. 2014;28(5):632–638. doi: 10.1016/j.jdiacomp.2014.04.011. PubMed DOI PMC
Wukich D. K., Hobizal K. B., Brooks M. M. Severity of diabetic foot infection and rate of limb salvage. Foot and Ankle International. 2013;34(3):351–358. doi: 10.1177/1071100712467980. PubMed DOI PMC
Jirkovská A., Fejfarová V., Hosová J., Stříž I., Kalanin J., Skibová J. Analysis of the inflammation reaction and selected indicators of immunity in patients with an infected diabetic ulcer. Casopis Lekaru Ceskych. 2002;141(15):483–486. PubMed
Jirkovská A., Fejfarová V., Hosová J., Kalanin J., Stríz I., Skibová J. Non-specific immune responses in patients with chronic diabetic foot syndrome and chronic bacterial infection. Vnitrni Lekarstvi. 2002;48(2):142–146. PubMed
Boyanova L., Mitov I. Antibiotic resistance rates in causative agents of infections in diabetic patients: rising concerns. Expert Review of Anti-Infective Therapy. 2013;11(4):411–420. doi: 10.1586/eri.13.19. PubMed DOI
Lipsky B. A., Itani K. M. F., Weigelt J. A., et al. The role of diabetes mellitus in the treatment of skin and skin structure infections caused by methicillin-resistant Staphylococcus aureus: results from three randomized controlled trials. International Journal of Infectious Diseases. 2011;15(2):e140–e146. doi: 10.1016/j.ijid.2010.10.003. PubMed DOI
International consensus on the diabetic foot and practical guidelines on the management and prevention of the diabetic foot by The international working group on the diabetic foot International working group on the diabetic foot/ consultative section of IDF.
Lipsky B. A., Berendt A. R., Cornia P. B., et al. 2012 Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. Clinical Infectious Diseases. 2012;54(12):e132–e173. doi: 10.1093/cid/cis346. PubMed DOI
Fejfarová V., Jirkovská A., Petkov V., Bouček P., Skibová J. Comparison of microbial findings and resistance to antibiotics between transplant patients, patients on hemodialysis, and other patients with the diabetic foot. Journal of Diabetes and Its Complications. 2004;18(2):108–112. doi: 10.1016/s1056-8727(02)00276-3. PubMed DOI
Courvalin P. Interpretive reading of in vitro antibiotic susceptibility tests (the antibiogramme) Clinical Microbiology and Infection. 1996;2(supplement 1):S26–S34. doi: 10.1111/j.1469-0691.1996.tb00872.x. PubMed DOI
Reese R. E., Betts R. F. Antibiotic use. In: Reese R. E., Betts R. F., editors. A Practical Approach to Infectious Diseases. Little: Brown and Company; 1996. pp. 1059–1395.
Urbášková P. Vybrané Metody. Prague, Czech Republic: Trios; 1999.
Williams D. R., Wilson C. T., Carr-Smith H. D. Assignment of IgG subclass values to the protein reference preparation DA470k. Clinical Chemistry. 2009;55(S6):p. 90.
Duffy M. M., Ritter T., Ceredig R., Griffin M. D. Mesenchymal stem cell effects on T-cell effector pathways. Stem Cell Research and Therapy. 2011;2(4, article 34) doi: 10.1186/scrt75. PubMed DOI PMC
Dhabhar F. S. Psychological stress and immunoprotection versus immunopathology in the skin. Clinics in Dermatology. 2013;31(1):18–30. doi: 10.1016/j.clindermatol.2011.11.003. PubMed DOI
Kuranda K., Vargaftig J., de la Rochere P., et al. Age-related changes in human hematopoietic stem/progenitor cells. Aging Cell. 2011;10(3):542–546. doi: 10.1111/j.1474-9726.2011.00675.x. PubMed DOI
Tanaka S.-I., Isoda F., Ishihara Y., Kimura M., Yamakawa T. T lymphopaenia in relation to body mass index and TNF-α in human obesity: adequate weight reduction can be corrective. Clinical Endocrinology. 2001;54(3):347–354. doi: 10.1046/j.1365-2265.2001.1139/cn2155.x. PubMed DOI
Arya A. K., Pokharia D., Tripathi K. Relationship between oxidative stress and apoptotic markers in lymphocytes of diabetic patients with chronic non healing wound. Diabetes Research and Clinical Practice. 2011;94(3):377–384. doi: 10.1016/j.diabres.2011.08.004. PubMed DOI
Tanaka S.-I., Isoda F., Kiuchi Y., Ikeda H., Mobbs C. V., Yamakawa T. T lymphopenia in genetically obese-diabetic Wistar fatty rats: effects of body weight reduction on T cells. Metabolism: Clinical and Experimental. 2000;49(10):1261–1266. doi: 10.1053/meta.2000.9516. PubMed DOI
von Känel R., Mills P. J., Dimsdale J. E. Short-term hyperglycemia induces lymphopenia and lymphocyte subset redistribution. Life Sciences. 2001;69(3):255–262. doi: 10.1016/s0024-3205(01)01127-4. PubMed DOI
Yuan Y., Ren J., Gu G., Cao S., Li J. The effect of human complement C3 protein applied at different times in treatment of polymicrobial sepsis. Inflammation Research. 2012;61(6):581–589. doi: 10.1007/s00011-012-0448-4. PubMed DOI
Mauriello C. T., Hair P. S., Rohn R. D., Rister N. S., Krishna N. K., Cunnion K. M. Hyperglycemia inhibits complement-mediated immunological control of S. aureus in a rat model of peritonitis. Journal of Diabetes Research. 2014;2014:11. doi: 10.1155/2014/762051.762051 PubMed DOI PMC
Salozhin K. V., Sura V. V., Nasonov E. L., Korneeva M. N., Smirnova O. I. The functional activity and count of the natural killer cells in patients with recently diagnosed diabetes mellitus types I and II. Terapevticheskii Arkhiv. 1989;61(10):104–106. PubMed
Armstrong D. G., Lavery L. A., Sariaya M., Ashry H. Leukocytosis is a poor indicator of acute osteomyelitis of the foot in diabetes mellitus. Journal of Foot and Ankle Surgery. 1996;35(4):280–283. doi: 10.1016/S1067-2516(96)80075-5. PubMed DOI
Lipsky B. A. Bone of contention: diagnosing diabetic foot osteomyelitis. Clinical Infectious Diseases. 2008;47(4):528–530. doi: 10.1086/590012. PubMed DOI
Weigelt C., Rose B., Poschen U., et al. Immune mediators in patients with acute diabetic foot syndrome. Diabetes Care. 2009;32(8):1491–1496. doi: 10.2337/dc08-2318. PubMed DOI PMC
Altay F. A., Şencan I., Şentürk G. Ç., et al. Does treatment affect the levels of serum Interleukin-6, Interleukin-8 and procalcitonin in diabetic foot infection? A pilot study. Journal of Diabetes and its Complications. 2012;26(3):214–218. doi: 10.1016/j.jdiacomp.2012.03.018. PubMed DOI
Jeandrot A., Richard J.-L., Combescure C., et al. Serum procalcitonin and C-reactive protein concentrations to distinguish mildly infected from non-infected diabetic foot ulcers: a pilot study. Diabetologia. 2008;51(2):347–352. doi: 10.1007/s00125-007-0840-8. PubMed DOI PMC
Dubský M., Jirkovská A., Bem R., et al. Risk factors for recurrence of diabetic foot ulcers: prospective follow-up analysis in the Eurodiale subgroup. International Wound Journal. 2013;10(5):555–561. doi: 10.1111/j.1742-481x.2012.01022.x. PubMed DOI PMC
Fejfarová V., Jirkovská A., Kalanin J., Skibova J., Striz I. Functional changes of polymorphonuclear cells in patients with chronic diabetic foot infection. Immunology Letters. 2000;73(2-3):262–263.
Fejfarová V., Jirkovská A., Kalanin J., et al. Imunologické abnormality u pacientů se syndromem diabetické nohy a jejich vztah k chronickému zánětu. Abstract in DMEV. 2001;(supplement 1):p. 16.
Jörneskog G. Why critical limb ischemia criteria are not applicable to diabetic foot and what the consequences are. Scandinavian Journal of Surgery. 2012;101(2):114–118. doi: 10.1177/145749691210100207. PubMed DOI
Chronic Venous Disease and Its Intersections With Diabetes Mellitus