Common Variable Immunodeficiency patients with a phenotypic profile of immunosenescence present with thrombocytopenia
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28054583
PubMed Central
PMC5214528
DOI
10.1038/srep39710
PII: srep39710
Knihovny.cz E-zdroje
- MeSH
- aktivace lymfocytů MeSH
- B-lymfocyty imunologie MeSH
- běžná variabilní imunodeficience imunologie MeSH
- CD4-pozitivní T-lymfocyty imunologie MeSH
- dospělí MeSH
- fenotyp MeSH
- fibróza MeSH
- idiopatická trombocytopenická purpura imunologie MeSH
- imunosenescence MeSH
- kohortové studie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- plíce patologie MeSH
- průtoková cytometrie MeSH
- senioři MeSH
- separace buněk MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Common variable immunodeficiency (CVID) is a heterogeneous group of diseases. Our aim was to define sub-groups of CVID patients with similar phenotypes and clinical characteristics. Using eight-color flow cytometry, we analyzed both B- and T-cell phenotypes in a cohort of 88 CVID patients and 48 healthy donors. A hierarchical clustering of probability binning "bins" yielded a separate cluster of 22 CVID patients with an abnormal phenotype. We showed coordinated proportional changes in naïve CD4+ T-cells (decreased), intermediate CD27- CD28+ CD4+ T-cells (increased) and CD21low B-cells (increased) that were stable for over three years. Moreover, the lymphocytes' immunophenotype in this patient cluster exhibited features of profound immunosenescence and chronic activation. Thrombocytopenia was only found in this cluster (36% of cases, manifested as Immune Thrombocytopenia (ITP) or Evans syndrome). Clinical complications more frequently found in these patients include lung fibrosis (in 59% of cases) and bronchiectasis (55%). The degree of severity of these symptoms corresponded to more deviation from normal levels with respect to CD21low B-cells, naïve CD4+ and CD27− CD28+ CD4+ T-cells. Next-generation sequencing did not reveal any common genetic background. We delineate a subgroup of CVID patients with activated and immunosenescent immunophenotype of lymphocytes and distinct set of clinical complications without common genetic background.
Department of Clinical Immunology and Allergology St Anne's University Hospital Brno Czech Republic
Faculty of Medicine Masaryk University Brno Czech Republic
Institute of Clinical Immunology and Allergology University Hospital Hradec Kralove Czech Republic
Research Institute of Internal Medicine Oslo University Hospital Rikshospitalet Oslo Norway
Zobrazit více v PubMed
Resnick E. S., Moshier E. L., Godbold J. H. & Cunningham-Rundles C. Morbidity and mortality in common variable immune deficiency over 4 decades. Blood 119, 1650–1657 (2012). PubMed PMC
Gathmann B. et al.. Clinical picture and treatment of 2212 patients with common variable immunodeficiency. J. Allergy Clin. Immunol. 134, 116–126.e11 (2014). PubMed
Piqueras B. et al.. Common variable immunodeficiency patient classification based on impaired B cell memory differentiation correlates with clinical aspects. J. Clin. Immunol. 23, 385–400 (2003). PubMed
Warnatz K. et al.. Severe deficiency of switched memory B cells (CD27+IgM-IgD-) in subgroups of patients with common variable immunodeficiency: a new approach to classify a heterogeneous disease. Blood 99, 1544–1551 (2002). PubMed
Wehr C. et al.. The EUROclass trial: defining subgroups in common variable immunodeficiency. Blood 111, 77–85 (2008). PubMed
Driessen G. J. et al.. B-cell replication history and somatic hypermutation status identify distinct pathophysiologic backgrounds in common variable immunodeficiency. Blood 118, 6814–23 (2011). PubMed
Aukrust P. et al.. Persistent activation of the tumor necrosis factor system in a subgroup of patients with common variable immunodeficiency–possible immunologic and clinical consequences. Blood 87, 674–81 (1996). PubMed
Giovannetti A. et al.. Unravelling the complexity of T cell abnormalities in common variable immunodeficiency. J. Immunol. 178, 3932–43 (2007). PubMed
Vlková M. et al.. Age dependency and mutual relations in T and B lymphocyte abnormalities in common variable immunodeficiency patients. Clin. Exp. Immunol. 143, 373–9 (2006). PubMed PMC
Mouillot G. et al.. B-cell and T-cell phenotypes in CVID patients correlate with the clinical phenotype of the disease. J. Clin. Immunol. 30, 746–55 (2010). PubMed
Warnatz K. & Schlesier M. Flowcytometric phenotyping of common variable immunodeficiency. Cytometry B. Clin. Cytom. 74, 261–71 (2008). PubMed
Vlkova M. et al.. Regulatory B cells in CVID patients fail to suppress multifunctional IFN-γ+ TNF-α+CD4+ T cells differentiation. Clin. Immunol. 160, 292–300 (2015). PubMed
Rakhmanov M. et al.. Circulating CD21low B cells in common variable immunodeficiency resemble tissue homing, innate-like B cells. Proc. Natl. Acad. Sci. USA 106, 13451–6 (2009). PubMed PMC
Vlková M. et al.. Characterization of lymphocyte subsets in patients with common variable immunodeficiency reveals subsets of naive human B cells marked by CD24 expression. J. Immunol. 185, 6431–8 (2010). PubMed
Isnardi I. et al.. Complement receptor 2/CD21- human naive B cells contain mostly autoreactive unresponsive clones. Blood 115, 5026–36 (2010). PubMed PMC
Saadoun D. et al.. Expansion of autoreactive unresponsive CD21-/low B cells in sjögren’s syndrome-associated lymphoproliferation. Arthritis Rheum. 65, 1085–1096 (2013). PubMed PMC
Warnatz K. et al.. Expansion of CD19(hi)CD21(lo/neg) B cells in common variable immunodeficiency (CVID) patients with autoimmune cytopenia. Immunobiology 206, 502–13 (2002). PubMed
Kalina T. et al.. Profiling of polychromatic flow cytometry data on B-cells reveals patients’ clusters in common variable immunodeficiency. Cytometry 75, 902–9 (2009). PubMed
Fevang B. et al.. Low numbers of regulatory T cells in common variable immunodeficiency: Association with chronic inflammation in vivo. Clin. Exp. Immunol. 147, 521–525 (2007). PubMed PMC
Conley M. E., Notarangelo L. D. & Etzioni A. Diagnostic Criteria for Primary Immunodeficiencies. Clin. Immunol. 93, 190–197 (1999). PubMed
DePristo M. A. et al.. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011). PubMed PMC
Li H. & Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009). PubMed PMC
Kumar P., Henikoff S. & Ng P. C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4, 1073–81 (2009). PubMed
Adzhubei I. A. et al.. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–9 (2010). PubMed PMC
Thorvaldsdóttir H., Robinson J. T. & Mesirov J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–92 (2013). PubMed PMC
Finak G. et al.. OpenCyto: an open source infrastructure for scalable, robust, reproducible, and automated, end-to-end flow cytometry data analysis. PLoS Comput. Biol. 10, e1003806 (2014). PubMed PMC
Stuchlý J. & Kalina T. Analyses of large flow cytometry datasets. Cytom. Part A 85, 203–5 (2014). PubMed
Roederer M., Moore W., Treister A., Hardy R. R. & Herzenberg L. A. Probability binning comparison: a metric for quantitating multivariate distribution differences. Cytometry 45, 47–55 (2001). PubMed
Rogers W. T. & Holyst H. A. FlowFP: A Bioconductor Package for Fingerprinting Flow Cytometric Data. Adv. Bioinformatics 2009, 1–11 (2009). PubMed PMC
Pollard K. S., Dudoit S. & van der Laan M. J. In Bioinforma. Comput. Biol. Solut. Using R Bioconductor (Gentleman R., Carey V., Huber W., Irizarry R. & D. S.) 251–272 (Springer, 2005).
Sosman J. A. et al.. Interleukin 10-induced thrombocytopenia in normal healthy adult volunteers: Evidence for decreased platelet production. Br. J. Haematol. 111, 104–111 (2000). PubMed
Pelák O. et al.. Appearance of CMV specific T-cells predicts fast resolution of viremia post hematopoietic Stem cell transplantation. Cytometry B. Clin. Cytom. doi: 10.1002/cyto.b.21348 (2015). PubMed DOI
Król L. et al.. Signature profiles of CMV-specific T-cells in patients with CMV reactivation after hematopoietic SCT. Bone Marrow Transplant. 46, 1089–98 (2011). PubMed
Freiberger T. et al.. Sequence variants of the TNFRSF13B gene in Czech CVID and IgAD patients in the context of other populations. Hum. Immunol. 73, 1147–54 (2012). PubMed
Poodt A. E. J. et al.. TACI mutations and disease susceptibility in patients with common variable immunodeficiency. Clin. Exp. Immunol. 156, 35–39 (2009). PubMed PMC
Uzel G. et al.. Dominant gain-of-function STAT1 mutations in FOXP3 wild-type immune dysregulation-polyendocrinopathy-enteropathy-X-linked-like syndrome. J. Allergy Clin. Immunol. 131, 1611–23 (2013). PubMed PMC
Wehr C. et al.. A new CD21 low B cell population in the peripheral blood of patients with SLE. Clin. Immunol. 113, 161–171 (2004). PubMed
Okada R., Kondo T., Matsuki F., Takata H. & Takiguchi M. Phenotypic classification of human CD4+ T cell subsets and their differentiation. Int. Immunol. 20, 1189–99 (2008). PubMed
Appay V. & Rowland-Jones S. L. Lessons from the study of T-cell differentiation in persistent human virus infection. Semin. Immunol. 16, 205–12 (2004). PubMed
Lee W., Yang Z., Li G., Weyand C. M. & Goronzy J. J. Unchecked CD70 expression on T cells lowers threshold for T cell activation in rheumatoid arthritis. J. Immunol. 179, 2609–15 (2007). PubMed PMC
Beishuizen C. R. L. et al.. Chronic CD70-driven costimulation impairs IgG responses by instructing T cells to inhibit germinal center B cell formation through FasL-Fas interactions. J. Immunol. 183, 6442–51 (2009). PubMed
Tesselaar K. et al.. Lethal T cell immunodeficiency induced by chronic costimulation via CD27–CD70 interactions. Nat. Immunol. 4, 49–54 (2003). PubMed
Pujadas E. & Feinberg A. P. Regulated noise in the epigenetic landscape of development and disease. Cell 148, 1123–1131 (2012). PubMed PMC
Lindstrom T. M. & Robinson W. H. Rheumatoid Arthritis: A Role for Immunosenescence? J. Am. Geriatr. Soc. 58, 1565–1575 (2010). PubMed PMC
Neunert C. et al.. The American Society of Hematology 2011 evidence-based practice guideline for immune thrombocytopenia. Blood 117, 4190–207 (2011). PubMed
Rodeghiero F. et al.. Standardization of terminology, definitions and outcome criteria in immune thrombocytopenic purpura of adults and children : report from an international working group Standardization of terminology, definitions and outcome criteria in immune thrombocyt. 113, 2386–2393 (2014). PubMed
Lo E. & Deane S. Diagnosis and classification of immune-mediated thrombocytopenia. Autoimmun. Rev. 13, 577–583 (2014). PubMed
Hel Z. et al.. Altered serum cytokine signature in common variable immunodeficiency. J. Clin. Immunol. 34, 971–8 (2014). PubMed PMC
Li F. et al.. Insufficient secretion of IL-10 by Tregs compromised its control on over-activated CD4+ T effector cells in newly diagnosed adult immune thrombocytopenia patients. Immunol. Res. 61, 269–280 (2015). PubMed
Marashi S. M. et al.. Influence of cytomegalovirus infection on immune cell phenotypes in patients with common variable immunodeficiency. J. Allergy Clin. Immunol. 129, 1349–1356.e3 (2012). PubMed
Marashi S. M. et al.. Inflammation in common variable immunodeficiency is associated with a distinct CD8(+) response to cytomegalovirus. J. Allergy Clin. Immunol. 127, 1385–93.e4 (2011). PubMed PMC
van Schouwenburg P. A. et al.. Application of Whole Genome and Rna Sequencing to Investigate the Genomic Landscape of Common Variable Immunodeficiency. Clin. Immunol. 160, 301–314 (2015). PubMed PMC