Disruption of dopamine homeostasis has sexually dimorphic effects on senescence characteristics of Drosophila melanogaster
Jazyk angličtina Země Francie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
R15 NS078728
NINDS NIH HHS - United States
PubMed
28112452
PubMed Central
PMC5359053
DOI
10.1111/ejn.13525
Knihovny.cz E-zdroje
- Klíčová slova
- 4-hydroxynonenal, aging, circadian rhythms, lifespan, protein carbonyl,
- MeSH
- cirkadiánní hodiny MeSH
- dopamin genetika metabolismus MeSH
- Drosophila melanogaster MeSH
- genotyp MeSH
- homeostáza * MeSH
- lokomoce MeSH
- peroxidace lipidů MeSH
- proteiny Drosophily genetika metabolismus MeSH
- sexuální faktory MeSH
- stárnutí genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- catsup protein, Drosophila MeSH Prohlížeč
- dopamin MeSH
- proteiny Drosophily MeSH
The neurotransmitter dopamine (DA) is known to be involved in a multitude of physiological processes. We investigated sexually dimorphic effects of disruptions in DA homeostasis and its relationship to senescence using three different Drosophila melanogaster mutants namely Catsup (Catsup26 ) with elevated DA levels, and pale (ple2 ), Punch (PuZ22 ) with depleted DA levels. In all genotypes including controls, DA levels were significantly lower in old (45-50-day-old) flies compared with young (3-5-day-old) in both sexes. Interestingly, females had lower DA content than males at young age whereas this difference was not observed in old age, suggesting that males had a larger decline in DA levels with age. Females, in general, were longer lived compared with males in all genotypes except ple2 mutants with depleted DA levels. This phenotype was abolished in the ple2 rescue flies. Interestingly, females also demonstrated marked age-related decline in circadian locomotor activity compared with males. Old Catsup26 males with elevated DA levels accumulated significantly lower levels of lipid peroxidation product 4-hydroxy 2-nonenal (4-HNE) compared with age-matched wild type, ple2 and PuZ22 mutant males. In Catsup26 revertant lines this phenomenon was absent. We also observed a sexually dimorphic response in the expression levels of key stress and aging associated and/or related transcription factor genes across genotypes with elevated or depleted DA levels which was reverted to wild type levels in specific rescue lines. Taken together, our results reveal a novel sexually dimorphic involvement of DA in senescence characteristics of D. melanogaster.
Department of Biological Sciences University of Alabama Tuscaloosa AL USA
Institute of Entomology Biology Centre Academy of Sciences České Budĕjovice Czech Republic
Zobrazit více v PubMed
Aarts E, van Holstein M, Cools R. Striatal dopamine and the interface between motivation and cognition. Front Physiol. 2011;2:163. PubMed PMC
Anderson R, Prolla T. PGC-1α in aging and anti-aging interventions. Biochim Biophys Acta. 2009;1790:1059–1066. PubMed PMC
Anderson RM, Weindruch R. Metabolic reprogramming in dietary restriction. Interdiscipl Top Gerontol. 2007;35:18–38. PubMed PMC
Andretic R, van Swinderen B, Greenspan RJ. Dopaminergic modulation of arousal in Drosophila. Curr Biol. 2005;15:1165–1175. PubMed
Argue KJ. PhD Thesis. Saint Louis University; 2012. Differential recruitment of dopamine neurons into the stress response in Drosophila melanogaster depends on sex and level of sexual maturity. p. 217.
Bednářová A, Kodrík D, Krishnan N. Adipokinetic hormone exerts its anti-oxidative effects using a conserved signal-transduction mechanism involving both PKC and cAMP by mobilizing extra- and intracellular Ca2+ stores. Comp Biochem Physiol C Toxicol Pharmacol. 2013;158:142–149. PubMed
Bednářová A, Kodrík D, Krishnan N. Knockdown of adipokinetic hormone synthesis increases susceptibility to oxidative stress in Drosophila--a role for dFoxO? Comp Biochem Physiol C Toxicol Pharmacol. 2015;171:8–14. PubMed
Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell. 1999;96:857–868. PubMed
Chahal HS, Drake WM. The endocrine system and ageing. J Pathol. 2007;211:173–180. PubMed
Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature. 2007;450:736–740. PubMed
De Graff AM, Hazoglou MJ, Dill KA. Highly charged proteins: The Achilles’ heel of aging proteomes. Structure. 2016;24:329–336. PubMed
De Luca M, Roshina NV, Geiger-Thornsberry GL, Lyman RF, Pasyukova EG, Mackay TF. Dopa decarboxylase (Ddc) affects variation in Drosophila longevity. Nat Genet. 2003;34:429–433. PubMed
Edwards MG, Sarkar D, Klopp R, Morrow JD, Weindruch R, Prolla TA. Age-related impairment of the transcriptional responses to oxidative stress in the mouse heart. Physiol Genomics. 2003;13:119–127. PubMed
Foltenyi K, Andretic R, Newport JW, Greenspan RJ. Neurohormonal and neuromodulatory control of sleep in Drosophila. Cold Spring Harb Symp Quant Biol. 2007;72:565–571. PubMed
Friggi-Grelin F, Coulom H, Meller M, Gomez D, Hirsh J, Birman S. Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase. J Neurobiol. 2003;54:618–627. PubMed
Fukagawa NK. Aging: is oxidative stress a marker or is it causal? Proc Soc Exp Biol Med. 1999;222:293–298. PubMed
Greer EL, Brunet A. FOXO transcription factors in ageing and cancer. Acta Physiol. 2008;192:19–28. PubMed
Grosbellet E, Zahn S, Arrivé M, Dumont S, Gourmelen S, Pévet P, Challet E, Criscuolo F. Circadian desynchronization triggers premature cellular aging in a diurnal rodent. FASEB J. 2015;29:4794–4803. PubMed
Groth C, Sasamura T, Khanna MR, Whitley M, Fortini ME. Protein trafficking abnormalities in Drosophila tissues with impaired activity of the ZIP7 zinc transporter Catsup. Development. 2013;140:3018–3027. PubMed PMC
Gruntenko NF, Karpova EK, Alekseev AA, Chentsova NA, Saprykina ZV, Bownes M, Rauschenbach IY. Effects of dopamine on juvenile hormone metabolism and fitness in Drosophila virilis. J Insect Physiol. 2005;51:959–968. PubMed
Gruntenko NK, Rauschenbach IY. Interplay of JH, 20E and biogenic amines under normal and stress conditions and its effects on reproduction. J Insect Physiol. 2008;54:902–908. PubMed
Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30:214–226. PubMed PMC
Hanna ME, Bednářová A, Rakshit K, Chaudhuri A, O’Donnell JM, Krishnan N. Perturbations in dopamine synthesis lead to discrete physiological effects and impact oxidative stress response in Drosophila. J Insect Physiol. 2015;73:11–19. PubMed PMC
Iliadi KG, Boulianne GL. Age-related behavioral changes in Drosophila. Ann NY Acad Sci. 2010;1197:9–18. PubMed
Jager S, Handschin C, St-Pierre J, Speigelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1 alpha. Proc Natl Acad Sci USA. 2007;104:12017–12022. PubMed PMC
Kirkwood TBL, Austad SN. Why do we age? Nature. 2000;408:233–238. PubMed
Krishnan N, Večeřa J, Kodrík D, Sehnal F. 20-Hydroxyecdysone prevents oxidative stress damage in adult Pyrrhocoris apterus. Arch Insect Biochem Physiol. 2007;65:114–124. PubMed
Krishnan N, Kretzschmar D, Rakshit K, Chow E, Giebultowicz JM. The circadian clock gene period extends healthspan in aging Drosophila melanogaster. Aging. 2009;1:937–948. PubMed PMC
Lage R, Diéguez C, Vidal-Puig A, López M. AMPK: a metabolic gauge regulating whole-body energy homeostasis. Trends Mol Med. 2008;14:539–549. PubMed
Landis GN, Abdueva D, Skvortov D, Yang J, Rabin BE, Carrick J, Tavare S, Tower J. Similar gene expression patterns characterize aging and oxidative stress in Drosophila melanogaster. Proc Natl Acad Sci USA. 2004;101:7663–7668. PubMed PMC
Lee JH, Bodmer R, Bier E, Karin M. Sestrins at the crossroad between stress and aging. Aging. 2010;2:369–374. PubMed PMC
Liu T, Dartevelle L, Yuan C, Wei H, Wang Y, Ferveur JF, Gua A. Increased dopamine level enhances male-male courtship in Drosophila. J Neurosci. 2008;28:5539–5546. PubMed PMC
Mackay W, Reynolds ER, O'Donnell JM. Tissue-specific and complex complementation patterns in the Punch locus of Drosophila melanogaster. Genetics. 1985;111:885–904. PubMed PMC
Martin CA, Krantz DE. Drosophila melanogaster as a genetic model system to study neurotransmitter transporters. Neurochem Int. 2014;73:71–88. PubMed PMC
Mukherjee S, Basar MA, Davis C, Duttaroy A. Emerging functional similarities and divergences between Drosophila Spargel/dPGC-1 and mammalian PGC-1 protein. Front Genet. 2014;5:216. PubMed PMC
Nakamura TJ, Takasu NN, Nakamura W. The suprachiasmatic nucleus: age-related decline in biological rhythms. J Physiol Sci. 2016;66:367–374. PubMed PMC
Neckameyer WS, White K. Drosophila tyrosine hydroxylase is encoded by the pale locus. J Neurogenet. 1993;8:189–199. PubMed
Neckameyer WS, Woodrome S, Holt B, Mayer A. Dopamine and senescence in Drosophila melanogaster. Neurobiol Aging. 2000;21:145–152. PubMed
Newland PL, Al Ghamdi MS, Sharkh S, Aonuma H, Jackson CW. Exposure to static electric fields leads to changes in biogenic amine levels in brains on Drosophila. Proc R Soc B. 2015;282:20151198. PubMed PMC
Papaconstantinou J, Reisner PD, Liu L, Kunninger D. Mechanisms of altered gene expression with aging. In: Schneider EL, Rowe JW, editors. Handbook of the Biology of Aging. 4th edn. Academic Press; San Diego: 1996. pp. 150–183. Chapter 8.
Pendleton RG, Rasheed A, Sardina T, Tully T, Hillman R. Effects of tyrosine hydroxylase mutants on locomotor activity in Drosophila: a study in functional genomics. Behav Genet. 2002;32:89–94. PubMed
Pfeiffenberger C, Lear BC, Keegan KP, Allada R. Locomotor activity level monitoring using the Drosophila Activity Monitoring (DAM) System. Cold Spring Harb Protoc. 2010;11:pdb.prot5518. PubMed
Rakshit K, Krishnan N, Guzik EM, Pyza E, Giebultowicz JM. Effects of aging on the molecular circadian oscillations in Drosophila. Chronobiol Int. 2012;29:5–14. PubMed PMC
Rauschenbach IY, Bogomolova EV, Karpova EK, Adonyeva NV, Faddeeva NV, Menshanov PN, Gruntenko NE. Mechanisms of age-specific regulation of dopamine metabolism by juvenile hormone and 20-hydroxyecdysone in Drosophila females. J Comp Physiol B. 2011;181:19–26. PubMed
Rauschenbach IY, Karpova EV, Adonyeva NV, Andreenkova OV, Faddeeva NV, Burdina EV, Alekseev AA, Menshanov PN, Gruntenko NE. Disruption of insulin signaling affects the neuroendocrine stress reaction in Drosophila females. J Exp Biol. 2014;217(Pt. 20):3733–3741. PubMed
Rauschenbach IY, Karpova EK, Alekseev AA, Adonyeva NV, Shumnaja LV, Gruntenko NE. Interplay of insulin and dopamine signaling pathways in the control of Drosophila melanogaster fitness. Dokl Biochem Biophys. 2015;461:135–138. PubMed
Rauschenbach IY, Serova LI, Timochina IS, Chentsova NA, Shumnaja LV. Analysis of differences in dopamine content between two lines of Drosophila virilis in response to heat stress. J Insect Physiol. 1993;39:761–767.
Rehman HU, Masson EA. Neuroendocrinology of ageing. Age Ageing. 2001;30:279–287. PubMed
Rera M, Bahadorani S, Cho J, Koehler CL, Ulgherait M, Hur JH, Ansari WS, Lo T, Jr., Jones DL, Walker DW. Modulation of longevity and tissue homeostasis by the Drosophila PGC-1 homolog. Cell Metab. 2011;14:623–634. PubMed PMC
Reynolds ER, O'Donnell JM. Characterization of new Punch mutations: identification of two additional mutant classes. Genetics. 1988;119:609–617. PubMed PMC
Reznick RM, Zong H, Li J, Morino K, Moore IK, Yu HJ, Liu Z-X, Dong J, Mustard KJ, Hawley SA, Befroy D, Pypaert M, Hardie GG, Young LH, Shulman GI. Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab. 2007;5:151–156. PubMed PMC
Riemensperger T, Isabel G, Coulom H, Neuser K, Seugnet L, Kume K, Iché-Torres M, Cassar M, Strauss R, Preat T, Hirsh J, Birman S. Behavioral consequences of dopamine deficiency in the Drosophila central nervous system. Proc Natl Acad Sci USA. 2011;108:834–839. PubMed PMC
Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev. 2008;88:611–638. PubMed
Stathakis DG, Burton Y, McIvor WE, Krishnakumar S, Wright TRF, O'Donnell JM. The catecholamines up (Catsup) protein of Drosophila melanogaster functions as a negative regulator of tyrosine hydroxylase activity. Genetics. 1999;153:361–382. PubMed PMC
Sullivan R. Hemispheric asymmetry in stress processing in rat prefrontal cortex and the role of mesocortical dopamine. Stress. 2004;7:131–143. PubMed
Ulgherait M, Rana A, Rera M, Graniel J, Walker DW. AMPK modulates tissue and organismal aging in a non-cell-autonomous manner. Cell Reports. 2014;8:1767–1780. PubMed PMC
Vermeulen CJ, Cremers TI, Westerink BH, Van De Zande L, Bijlsma R. Changes in dopamine levels and locomotor activity in response to selection on virgin lifespan in Drosophila melanogaster. Mech Ageing Dev. 2006;127:610–617. PubMed
Vermeulen CJ, Loeschcke V. Longevity and the stress response in Drosophila. Exp Gerontol. 2007;42:153–159. PubMed
White KE, Humphrey DM, Hirth F. The dopaminergic system in the aging brain of Drosophila. Front Neurosci. 2010;4:205. PubMed PMC
Wong R, Piper MDW, Wertheim B, Partridge L. Quantification of food intake in Drosophila. PLoS One. 2009;4:e6063. PubMed PMC
Xu S, Cai Y, Wei Y. mTOR signaling from cellular senescence to organismal aging. Aging Dis. 2013;5:263–273. PubMed PMC