Evaluation of TaqMan qPCR System Integrating Two Identically Labelled Hydrolysis Probes in Single Assay
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28120891
PubMed Central
PMC5264587
DOI
10.1038/srep41392
PII: srep41392
Knihovny.cz E-zdroje
- MeSH
- barvení a značení * MeSH
- DNA sondy metabolismus MeSH
- fluorescence MeSH
- hydrolýza MeSH
- kalibrace MeSH
- koně MeSH
- kvantitativní polymerázová řetězová reakce metody MeSH
- nukleové kyseliny metabolismus MeSH
- psi MeSH
- reprodukovatelnost výsledků MeSH
- sekvence nukleotidů MeSH
- zvířata MeSH
- Check Tag
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA sondy MeSH
- nukleové kyseliny MeSH
Ongoing evolution of viral pathogens is a significant issue in diagnostic virology employing TaqMan qPCR/RT-qPCR. Specific concerns are related to false negativity due to probe binding failure. One option for compensating for such deficiency is to integrate a second identically labelled probe in the assay. However, how this alteration influences the reaction parameters has not been comprehensively demonstrated. In the present study, we evaluate a TaqMan protocol using two identically labelled hydrolysis probes (simple, LNA (locked-nucleic-acid)) and MGB (minor-groove-binder) modified probes and combinations thereof in a single assay. Our results based on a synthetic amplicon suggest that the second probe does not compromise the TaqMan qPCR/RT-qPCR parameters, which repeatedly and reproducibly remained comparable to those of the corresponding single-probe assays, irrespective of the relative probe orientation, whether opposite or tandem, and probe modifications or combinations thereof. On the other hand, the second probe additively contributed to the overall fluorescence signal. The utility of the dual-probe approach was demonstrated on practical examples by using field specimens. We hope that the present study might serve as a theoretical basis for the development or improvement of TaqMan qPCR/RT-qPCR assays for the detection of highly variable nucleic acid templates.
State Veterinary Institute Prague Department of Virology and Serology Prague 16503 Czech Republic
State Veterinary Institute Prague Laboratory of Molecular Methods Prague 16503 Czech Republic
Zobrazit více v PubMed
Holland P. M., Abramson R. D., Watson R. & Gelfand D. H. Detection of specific polymerase chain reaction product by utilizing the 5′–3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl. Acad. Sci. USA 88, 7276–7280 (1991). PubMed PMC
Behlke M. A., Huang L., Bogh L., Rose S. & Devor E. Fluorescence and fluorescence applications. Integrated DNA Technologies. (2005).
Stevenson J., Hymas W. & Hillyard D. Effect of sequence polymorphisms on performance of two real-time PCR assays for detection of herpes simplex virus. J. Clin. Microbiol. 43, 2391–2398 (2005). PubMed PMC
Kim L. M., Afonso C. L. & Suarez D. L. Effect of probe-site mismatches on detection of virulent Newcastle disease viruses using a fusion-gene real-time reverse transcription polymerase chain reaction test. J. Vet. Diagn. Invest. 18, 519–28 (2006). PubMed
Lengerova M. et al.. Real-time PCR diagnostics failure caused by nucleotide variability within exon 4 of the human cytomegalovirus major immediate-early gene. J. Clin. Microbiol. 45, 1042–4 (2007). PubMed PMC
Lemmon G. H. & Gardner S. N. Predicting the sensitivity and specificity of published real-time PCR assays. Ann. Clin. Microbiol. Antimicrob. 7, 18 (2008). PubMed PMC
Cattoli G. et al.. False-negative results of a validated real-time PCR protocol for diagnosis of newcastle disease due to genetic variability of the matrix gene. J. Clin. Microbiol. 47, 3791–3792 (2009). PubMed PMC
Klungthong C. et al.. The impact of primer and probe-template mismatches on the sensitivity of pandemic influenza A/H1N1/2009 virus detection by real-time RT-PCR. J Clin Virol. 48, 91–95 (2010). PubMed
Lee H. K. et al.. Missed diagnosis of influenza B virus due to nucleoprotein sequence mutations, Singapore. Euro Surveill. 16, pii19943 (2011). PubMed
Armstrong P. M., Prince N. & Andreadis T. G. Development of a multi-target TaqMan assay to detect eastern equine encephalitis virus variants in mosquitoes. Vector Borne Zoonotic Dis. 12, 872–876 (2012). PubMed PMC
Brault A. C., Fang Y., Dannen M., Anishchenko M. & Reisen W. K. A naturally occurring mutation within the probe-binding region compromises a molecular-based West Nile virus surveillance assay for mosquito pools (Diptera: Culicidae). J. Med. Entomol. 49, 939–41 (2012). PubMed PMC
Garson J. A. et al.. Minor groove binder modification of widely used TaqMan probe for hepatitis E virus reduces risk of false negative real-time PCR results. J. Virol. Methods. 186, 157–160 (2012). PubMed
Steensels D., Vankeerberghen A. & De Beenhouwer H. Towards multitarget testing in molecular microbiology. Int. J. Microbiol. ID121057 (2013). PubMed PMC
Nagy A. et al.. MeltMan: Optimization, Evaluation, and Universal Application of a qPCR System Integrating the TaqMan qPCR and Melting Analysis into a Single Assay. PLoS One. 11, e0151204 (2016). PubMed PMC
Yip S. P. et al.. Use of dual TaqMan probes to increase the sensitivity of 1-step quantitative reverse transcription-PCR: application to the detection of SARS coronavirus. Clin. Chem. 51, 1885–8 (2005). PubMed PMC
Aitichou M. et al.. Dual-probe real-time PCR assay for detection of variola or other orthopoxviruses with dried reagents. J. Virol. Methods. 153, 190–5 (2008). PubMed PMC
Zhao Y. et al.. Locked Nucleic Acid Probe-Based Real-Time PCR Assay for the Rapid Detection of Rifampin-Resistant Mycobacterium tuberculosis. PLoS One. 10, e0143444 (2015). PubMed PMC
Spackman E. et al.. Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J. Clin. Microbiol. 40, 3256–3260 (2002). PubMed PMC
Abril C. et al.. Both viral and host factors contribute to neurovirulence of bovine herpesviruses 1 and 5 in interferon receptor-deficient mice. J. Virol. 78, 3644–3653 (2004). PubMed PMC
Nagy A. et al.. Development and evaluation of a one-step real-time RT-PCR assay for universal detection of influenza A viruses from avian and mammal species. Arch. Virol. 155, 665–73 (2010). PubMed PMC
Fernández-Pinero J. et al.. Molecular diagnosis of African Swine Fever by a new real-time PCR using universal probe library. Transbound. Emerg. Dis. 60, 48–58 (2013). PubMed
Diallo I. S., Hewitson G., Wright L., Rodwell B. J. & Corney B. G. Detection of equine herpesvirus type 1 using a real-time polymerase chain reaction. J. Virol. Methods. 131, 92–8 (2006). PubMed
Diallo I. S. et al.. Multiplex real-time PCR for the detection and differentiation of equid herpesvirus 1 (EHV-1) and equid herpesvirus 4 (EHV-4). Vet. Microbiol. 123, 93–103 (2007). PubMed
Real-time PCR: understanding Ct. ThermoFisher Scientific (2016).
Amplification Efficiency of TaqMan Gene Expression Assays. Applied Biosystems (2004).
Fuller C. M., Brodd L., Irvine R. M., Alexander D. J. & Aldous E. W. Development of an L gene real-time reverse-transcription PCR assay for the detection of avian paramyxovirus type 1 RNA in clinical samples. Arch. Virol. 155, 817–23 (2010). PubMed
Hayman D. T. et al.. A universal real-time assay for the detection of Lyssaviruses. J. Viro.l Methods. 177, 87–93 (2011). PubMed PMC
Alm E. Universal single-probe RT-PCR assay for diagnosis of dengue virus infections. PLoS. Negl. Trop. Dis. 8, e3416 (2014). PubMed PMC
Universal Probe U. P. L. Library, Roche. Available at: https://lifescience.roche.com/webapp/wcs/stores/servlet/Product2_15006_10001_68068 (Accessed: 5th May 2016).
Streck A. F., Rüster D., Truyen U. & Homeier T. An updated TaqMan real-time PCR for canine and feline parvoviruses. J. Virol. Methods. 193, 6–8 (2013). PubMed PMC
Decaro N. et al.. Specific identification of feline panleukopenia virus and its rapid differentiation from canine parvoviruses using minor groove binder probes. J. Virol. Methods. 147, 67–71 (2008). PubMed
Westcott D. G. et al.. Use of an internal standard in a closed one-tube RT-PCR for the detection of equine arteritis virus RNA with fluorescent probes. Vet. Res. 34, 165–76 (2003). PubMed
Balasuriya U. B. et al.. Detection of equine arteritis virus by real-time TaqMan reverse transcription-PCR assay. J. Virol. Methods. 101, 21–8 (2002). PubMed
Hall T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41, 95–98 (1999).
Critical factors for successful real-time PCR. Qiagen. Real-Time PCR Brochure. 07, 1–63 (2010).