Single-Step BLUP with Varying Genotyping Effort in Open-Pollinated Picea glauca
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, U.S. Gov't, Non-P.H.S., Research Support, Non-U.S. Gov't
PubMed
28122953
PubMed Central
PMC5345723
DOI
10.1534/g3.116.037895
PII: g3.116.037895
Knihovny.cz E-resources
- Keywords
- GenPred, HBLUP, Shared Data Resources, bivariate mixed model, genomic selection, single-step BLUP, tree improvement,
- MeSH
- Breeding MeSH
- Genetic Markers MeSH
- Genotyping Techniques methods MeSH
- Pollination genetics MeSH
- Pedigree MeSH
- Picea genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- Genetic Markers MeSH
Maximization of genetic gain in forest tree breeding programs is contingent on the accuracy of the predicted breeding values and precision of the estimated genetic parameters. We investigated the effect of the combined use of contemporary pedigree information and genomic relatedness estimates on the accuracy of predicted breeding values and precision of estimated genetic parameters, as well as rankings of selection candidates, using single-step genomic evaluation (HBLUP). In this study, two traits with diverse heritabilities [tree height (HT) and wood density (WD)] were assessed at various levels of family genotyping efforts (0, 25, 50, 75, and 100%) from a population of white spruce (Picea glauca) consisting of 1694 trees from 214 open-pollinated families, representing 43 provenances in Québec, Canada. The results revealed that HBLUP bivariate analysis is effective in reducing the known bias in heritability estimates of open-pollinated populations, as it exposes hidden relatedness, potential pedigree errors, and inbreeding. The addition of genomic information in the analysis considerably improved the accuracy in breeding value estimates by accounting for both Mendelian sampling and historical coancestry that were not captured by the contemporary pedigree alone. Increasing family genotyping efforts were associated with continuous improvement in model fit, precision of genetic parameters, and breeding value accuracy. Yet, improvements were observed even at minimal genotyping effort, indicating that even modest genotyping effort is effective in improving genetic evaluation. The combined utilization of both pedigree and genomic information may be a cost-effective approach to increase the accuracy of breeding values in forest tree breeding programs where shallow pedigrees and large testing populations are the norm.
See more in PubMed
Aguilar I., Misztal I., Johnson D. L., Legarra A., Tsuruta S., et al. , 2010. Hot topic: a unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J. Dairy Sci. 93: 743–752. PubMed
Askew G. R., El-Kassaby Y. A., 1994. Estimation of relationship coefficients among progeny derived from wind-pollinated orchard seeds. Theor. Appl. Genet. 88: 267–272. PubMed
Beaulieu J., Doerksen T., Clément S., MacKay J., Bousquet J., 2014. Accuracy of genomic selection models in a large population of open-pollinated families in white spruce. Heredity 113: 343–352. PubMed PMC
Burdon R. D., Shelbourne C. J. A., 1971. Breeding populations for recurrent selection: conflicts and possible solutions. N. Z. J. For. Sci. 1: 174–193.
Butler D. G., Cullis B. R., Gilmour A. R., Gogel B. J., 2009. ASReml-R Reference Manual. The State of Queensland, Department of Primary Industries and Fisheries, Brisbane, Australia.
Calus M. P. L., Meuwissen T. H. E., De Roos A. P. W., Veerkamp R. F., 2008. Accuracy of genomic selection using different methods to define haplotypes. Genetics 178: 553–561. PubMed PMC
Cappa E. P., Klápště J., Garcia M. N., Villalba P. V., Poltri S. N. M., 2016. SSRs, SNPs and DArTs comparison on estimation of relatedness and genetic parameters’ precision from a small half-sib sample population of Eucalyptus grandis. Mol. Breed. 36: 1–19.
Christensen O. F., Lund M. S., 2010. Genomic prediction when some animals are not genotyped. Genet. Sel. Evol. 42: 2. PubMed PMC
Christensen O. F., Madsen P., Nielsen B., Ostersen T., Su G., 2012. Single-step methods for genomic evaluation in pigs. Animal 6: 1565–1571. PubMed
Doerksen T. K., Herbinger C. M., 2010. Impact of reconstructed pedigrees on progeny-test breeding values in red spruce. Tree Genet. Genomes 6: 591–600.
Ducrocq V., Patry C., 2010. Combining genomic and classical information in national BLUP evaluation to reduce bias due to genomic pre-selection. Interbull Bull. 41: 33–36.
Dutkowski G. W., e Silva J. C., Gilmour A. R., Lopez G. A., 2002. Spatial analysis methods for forest genetic trials. Can. J. For. Res. 32: 2201–2214.
El-Kassaby Y. A., Lstibůrek M., 2009. Breeding without breeding. Genet. Res. 91: 111–120. PubMed
El-Kassaby Y. A., Cappa E. P., Liewlaksaneeyanawin C., Klápště J., Lstibŭrek M., 2011. Breeding without breeding: is a complete pedigree necessary for efficient breeding? PLoS One 6: e25737. PubMed PMC
El-Kassaby Y. A., Klápště J., Guy R. D., 2012. Breeding without breeding: selection using the genomic best linear unbiased predictor method (GBLUP). New For. 43: 631–637.
Falconer D. S., Mackay T. F., 1996. Introduction to Quantitative Genetics. Longmans Green, Harlow, Essex.
Forni S., Aguilar I., Misztal I., 2011. Different genomic relationship matrices for single-step analysis using phenotypic, pedigree and genomic information. Genet. Sel. Evol. 43: 1. PubMed PMC
Frentiu F. D., Clegg S. M., Chittock J., Burke T., Blows M. W., et al. , 2008. Pedigree-free animal models: the relatedness matrix reloaded. Proc. R. Soc. Lond. B Biol. Sci. 275: 639–647. PubMed PMC
GamalEl-Dien O., Ratcliffe B., Klápště J., Porth I., Chen C., et al. , 2016. Implementation of the realized genomic relationship matrix to open-pollinated white spruce family testing for disentangling additive from nonadditive genetic effects. G3 (Bethesda) 6: 743–753. PubMed PMC
Grattapaglia D., Resende M. D., 2011. Genomic selection in forest tree breeding. Tree Genet. Genomes 7: 241–255.
Habier D., Fernando R. L., Garrick D. J., 2013. Genomic BLUP decoded: a look into the black box of genomic prediction. Genetics 194: 597–607. PubMed PMC
Henderson C. R., 1984. Applications of Linear Models in Animal Breeding. University of Guelph, Guelph, Canada.
Huber D. A., White T. L., Hodge G. R., 1992. The efficiency of half-sib, half-diallel and circular mating designs in the estimation of genetic parameters in forestry: a simulation. For. Sci. 38: 757–776.
Jayawickrama K. J. S., Carson M. J., 2000. A breeding strategy for the New Zealand radiata pine breeding cooperative. Silvae Genet. 49: 82–89.
Kalinowski S. T., Taper M. L., Marshall T. C., 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16: 1099–1106. PubMed
Klápště J., Lstibŭrek M., El-Kassaby Y. A., 2014. Estimates of genetic parameters and breeding values from western larch open-pollinated families using marker-based relationship. Tree Genet. Genomes 10: 241–249.
Koreckỳ J., Klápště J., Lstibŭrek M., Kobliha J., Nelson C. D., et al. , 2013. Comparison of genetic parameters from marker-based relationship, sibship, and combined models in Scots pine multi-site open-pollinated tests. Tree Genet. Genomes 9: 1227–1235.
Legarra A., Aguilar I., Misztal I., 2009. A relationship matrix including full pedigree and genomic information. J. Dairy Sci. 92: 4656–4663. PubMed
Liu H., Sørensen A. C., Meuwissen T. H. E., Berg P., 2014. Allele frequency changes due to hitch-hiking in genomic selection programs. Genet. Sel. Evol. 46: 8. PubMed PMC
Meuwissen T. H. E., Luan T., Woolliams J. A., 2011. The unified approach to the use of genomic and pedigree information in genomic evaluations revisited. J. Anim. Breed. Genet. 128: 429–439. PubMed
Misztal I., Legarra A., Aguilar I., 2009. Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. J. Dairy Sci. 92: 4648–4655. PubMed
Namkoong G., Kang H. C., Brouard J. S., 2012. Tree Breeding: Principles and Strategies. Springer Science & Business Media, Heidelberg, Germany.
Ødegård J., Meuwissen T. H. E., 2012. Estimation of heritability from limited family data using genome-wide identity-by-descent sharing. Genet. Sel. Evol. 44: 16. PubMed PMC
Oliehoek P. A., Windig J. J., Van Arendonk J. A., Bijma P., 2006. Estimating relatedness between individuals in general populations with a focus on their use in conservation programs. Genetics 173: 483–496. PubMed PMC
Pavy N., Gagnon F., Rigault P., Blais S., Deschênes A., et al. , 2013. Development of high-density SNP genotyping arrays for white spruce (Picea glauca) and transferability to subtropical and nordic congeners. Mol. Ecol. Resour. 13: 324–336. PubMed
Porth I., Klápště J., Skyba O., Lai B. S., Geraldes A., et al. , 2013. Populus trichocarpa cell wall chemistry and ultrastructure trait variation, genetic control and genetic correlations. New Phytol. 197: 777–790. PubMed
Powell J. E., Visscher P. M., Goddard M. E., 2010. Reconciling the analysis of IBD and IBS in complex trait studies. Nat. Rev. Genet. 11: 800–805. PubMed
Rigault P., Boyle B., Lepage P., Cooke J. E., Bousquet J., et al. , 2011. A white spruce gene catalog for conifer genome analyses. Plant Physiol. 157: 14–28. PubMed PMC
Ritland K., 1996. Estimators for pairwise relatedness and individual inbreeding coefficients. Genet. Res. 67: 175–185.
Squillace A. E., 1974. Average genetic correlations among offspring from open-pollinated forest trees. Silvae Genet. 23: 149–156.
VanRaden P. M., 2008. Efficient methods to compute genomic predictions. J. Dairy Sci. 91: 4414–4423. PubMed
Visscher P. M., Medland S. E., Ferreira M. A., Morley K. I., Zhu G., et al. , 2006. Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLoS Genet. 2: e41. PubMed PMC
Vitezica Z. G., Aguilar I., Misztal I., Legarra A., 2011. Bias in genomic predictions for populations under selection. Genet. Res. 93: 357–366. PubMed
Wang J., 2004. Sibship reconstruction from genetic data with typing errors. Genetics 166: 1963–1979. PubMed PMC