Evaluation of the efficiency of genomic versus pedigree predictions for growth and wood quality traits in Scots pine
Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
230-2014-427
Svenska Forskningsr?det Formas
PubMed
33198692
PubMed Central
PMC7667760
DOI
10.1186/s12864-020-07188-4
PII: 10.1186/s12864-020-07188-4
Knihovny.cz E-resources
- Keywords
- Bayesian, GBLUP, Pinus sylvestris, genotyping-by-sequencing, prediction accuracy, predictive ability, predictive accuracy, theoretical accuracy,
- MeSH
- Bayes Theorem MeSH
- Pinus sylvestris * genetics MeSH
- Wood * genetics MeSH
- Phenotype MeSH
- Genomics MeSH
- Polymorphism, Single Nucleotide MeSH
- Models, Genetic MeSH
- Pedigree MeSH
- Plant Breeding MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Genomic selection (GS) or genomic prediction is a promising approach for tree breeding to obtain higher genetic gains by shortening time of progeny testing in breeding programs. As proof-of-concept for Scots pine (Pinus sylvestris L.), a genomic prediction study was conducted with 694 individuals representing 183 full-sib families that were genotyped with genotyping-by-sequencing (GBS) and phenotyped for growth and wood quality traits. 8719 SNPs were used to compare different genomic with pedigree prediction models. Additionally, four prediction efficiency methods were used to evaluate the impact of genomic breeding value estimations by assigning diverse ratios of training and validation sets, as well as several subsets of SNP markers. RESULTS: Genomic Best Linear Unbiased Prediction (GBLUP) and Bayesian Ridge Regression (BRR) combined with expectation maximization (EM) imputation algorithm showed slightly higher prediction efficiencies than Pedigree Best Linear Unbiased Prediction (PBLUP) and Bayesian LASSO, with some exceptions. A subset of approximately 6000 SNP markers, was enough to provide similar prediction efficiencies as the full set of 8719 markers. Additionally, prediction efficiencies of genomic models were enough to achieve a higher selection response, that varied between 50-143% higher than the traditional pedigree-based selection. CONCLUSIONS: Although prediction efficiencies were similar for genomic and pedigree models, the relative selection response was doubled for genomic models by assuming that earlier selections can be done at the seedling stage, reducing the progeny testing time, thus shortening the breeding cycle length roughly by 50%.
Key Laboratory of Forest Genetics and Biotechnology Nanjing Forestry University Nanjing 210037 China
National Research Collection Australia CSIRO Canberra ACT 2601 Australia
RAGT Seeds Essex CB 101TA United Kingdom
See more in PubMed
Meuwissen T, Hayes B, Goddard M. Prediction of total genetic value using genome wide dense marker maps. Genetics. 2001;157:1819–29. PubMed PMC
Grattapaglia D, Silva-Junior OB, Resende RT, Cappa EP, Müller BSF, Tan B, Isik F, Ratcliffe B, El-Kassaby YA. Quantitative genetics and genomics converge to accelerate forest tree breeding. Front Plant Sci. 2018;9:1693. doi: 10.3389/fpls.2018.01693. PubMed DOI PMC
Grattapaglia D, Resende MDV. Genomic selection in forest tree breeding. Tree Genet Genomes. 2011;7:241–55. doi: 10.1007/s11295-010-0328-4. DOI
Goddard ME, Hayes BJ. Genomic selection. J Anim Breeding Genet. 2007;124(6):323–30. doi: 10.1111/j.1439-0388.2007.00702.x. PubMed DOI
Isik F, Whetten R, Zapata-Valenzuela J, Ogut F, McKeand S. Genomic selection in loblolly pine - from lab to field. BMC Proceedings. 2011;5:18. doi: 10.1186/1753-6561-5-S7-I8. DOI
Dekkers JCM. Prediction of response to marker-assisted and genomic selection using selection index theory. J Anim Breeding Genet. 2007;124(6):331–41. doi: 10.1111/j.1439-0388.2007.00701.x. PubMed DOI
Hayes BJ, Bowman PJ, Chamberlain AC, Verbyla K, Goddard ME. Accuracy of genomic breeding values in multi-breed dairy cattle populations. Genet Sel Evol. 2009;41:51. doi: 10.1186/1297-9686-41-51. PubMed DOI PMC
Lorenz AJ, Chao s., Asoro FG, Heffner EL, Hayashi T, Iwata H, Smith KP, Sorrells ME, Jannink J-L. Genomic selection in plant breeding: Knowledge and prospects. Adv Agron. 2011;110:77–123. doi: 10.1016/B978-0-12-385531-2.00002-5. DOI
Deschamps S, Campbell MA. Utilization of next-generation sequencing platforms in plant genomics and genetic variant discovery. Mol Breeding. 2010;25:553–79. doi: 10.1007/s11032-009-9357-9. DOI
Varshney RK, Nayak SN, May GD, Jackson SA. Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol. 2009;27(9):522–30. doi: 10.1016/j.tibtech.2009.05.006. PubMed DOI
Pérez-Enciso M, Rincón JC, Legarra A. Sequence-vs. chip-assisted genomic selection: accurate biological information is advised. Genet Sel Evol. 2015;47:43. doi: 10.1186/s12711-015-0117-5. PubMed DOI PMC
Birol I, Raymond A, Shaun DJ, Pleasance S, Coope R, Taylor GA, Yuen MMS, Keeling CI, Brand D, Vandervalk BP, et al. Assembling the 20 gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics. 2013;29(12):1492–7. doi: 10.1093/bioinformatics/btt178. PubMed DOI PMC
Nystedt B, Street N, Wetterbom A, Zuccolo A, Lin Y-C, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A, et al. The norway spruce genome sequence and conifer genome evolution. Nature. 2013;497:579–84. doi: 10.1038/nature12211. PubMed DOI
Neale DB, Wegrzyn JL, Stevens KA, Zimin AV, Puiu D, Crepeau MW, Cardeno C, Koriabine M, Holtz-Morris AE, Liechty JD, et al. Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol. 2014;15(R59). 10.1186/gb-2014-15-3-r59. PubMed PMC
Zimin A, Stevens KA, Crepeau MW, Holtz-Morris A, Koriabine M, Marçais G, Puiu D, Roberts M, Wegrzyn JL, de Jong PJ, et al. Sequencing and assembly of the 22-Gb loblolly pine genome. Genetics. 2014;196(3):875–90. doi: 10.1534/genetics.113.159715. PubMed DOI PMC
Stevens KA, Wegrzyn JL, Zimin A, Puiu D, Crepeau M, Cardeno C, Paul R, Gonzalez-Ibeas D, Koriabine M, Holtz-Morris AE, et al. Sequence of the sugar pine megagenome. Genetics. 2016;204(4):1613–26. doi: 10.1534/genetics.116.193227. PubMed DOI PMC
Suren H, Hodgins KA, Yeaman S, Nurkowski KA, Smets P, Rieseberg LH, Aitken SN, Holliday J. Exome capture from the spruce and pine giga-genomes. Mol Ecol Resour. 2016;16(5):1136–46. doi: 10.1111/1755-0998.12570. PubMed DOI
Vidalis A, Scofield DG, Neves LG, Bernhardsson C, García-Gil MR, Ingvarsson PK. Design and evaluation of a large sequence-capture probe set and associated SNPs for diploid and haploid samples of Norway spruce (Picea abies). bioRxiv 291716. 2018. 10.1101/291716.
Neves L, Davis J, Barbazuk B, Kirst M. Targeted sequencing in the loblolly pine (Pinus taeda) megagenome by exome capture. BMC Proc. 2011;5(O48). 10.1186/1753-6561-5-S7-O48.
Chen C, Mitchell SE, Elshire RJ, Buckler ES, El-Kassaby YA. Mining conifer’ mega-genome using rapid and efficient multiplexed high-throughput genotyping-by-sequencing (GBS) SNP discovery platform. Tree Genet Genomes. 2013;9:1537–44. doi: 10.1007/s11295-013-0657-1. DOI
Telfer E, Graham N, Macdonald L, Li Y, Klápště J, Resende Jr M, Neves LG, Dungey H, Wilcox P. A high-density exome capture genotype-by-sequencing panel for forestry breeding in Pinus radiata. PLoS ONE. 2019;14(9):e0222640. doi: 10.1371/journal.pone.0222640. PubMed DOI PMC
Poland JA, Rife TW. Genotyping-by-sequencing for plant breeding and genetics. Plant Genome. 2012;5(3):92–102. doi: 10.3835/plantgenome2012.05.0005. DOI
Houston Durrant T, De Rigo D, Caudullo G. Pinus sylvestris in Europe: distribution, habitat, usage and threats. European Atlas of Forest Tree Species. Luxembourg: Publications Office of the European Union; 2016.
Matyás C, Ackzell L, Samuel CJA. EUFORGEN technical guidelines for genetic conservation and use for Scots pine (Pinus sylvestris). Bioversity Int. 2004.
Krakau UK, Liesebach M, Aronen T, et al. Scots pine (Pinus sylvestris l.) In: Pques LE, et al., editors. Forest Tree Breeding in Europe. Dordrecht: Springer; 2013.
Fridman J, Nilsson P. Forest statistics of Swedish forests. 2015. https://www.slu.se/en/Collaborative-Centres-and-Projects/the-swedish-national-forest-inventory/forest-statistics/forest-statistics/, Accessed 7 April 2020.
Nilsson O, Lundmark T. Slu receives major grants for forest research. 2019. https://www.slu.se/en/ew-news/2019/1/slu-receives-major-grants-for-forest-research/, Accessed 7 September 2019.
He J, Zhao X, Laroche A, Lu Z-X, Liu H, Li Z. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci. 2014;5:484. doi: 10.3389/fpls.2014.00484. PubMed DOI PMC
Pan J, Wang B, Pei Z, Zhao W, Gao J, Mao J, Wang X. Optimization of the genotyping-by-sequencing strategy for population genomic analysis in conifers. Mol Ecol Resour. 2015;15(4):711–22. doi: 10.1111/1755-0998.12342. PubMed DOI
Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, Botstein D, Altman RB. Missing value estimation methods for DNA microarrays. Bioinformatics. 2001;17(6):520–5. doi: 10.1093/bioinformatics/17.6.520. PubMed DOI
Dempster AP, Laird NM, Rubin B. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B Methodol. 1977;39(1):1–22.
Endelman JB. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome. 2011;4(3):250–5. doi: 10.3835/plantgenome2011.08.0024. DOI
Poland J, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, Dreisigacker S, Crossa J, Sánchez-Villeda H, Sorrells M, et al. Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome. 2012;5(3):103–13. doi: 10.3835/plantgenome2012.06.0006. DOI
Hall D, Zhao W, Wennstrm U, Gull BA, Wang X-R. Parentage and relatedness reconstruction in Pinus sylvestris using genotyping-by-sequencing. Heredity. 2020;124:633–46. doi: 10.1038/s41437-020-0302-3. PubMed DOI PMC
Gorjanc G, Cleveland MA, Houston RD, Hickey JM. Potential of genotyping-by-sequencing for genomic selection in livestock populations. Genet Sel Evol. 2015;47:12. doi: 10.1186/s12711-015-0102-z. PubMed DOI PMC
Liu A, Lund M, Boichard D, Karaman E, Fritz S, Aamand GP, Nielsen US, Wang Y, Su G. Improvement of genomic prediction by integrating additional single nucleotide polymorphisms selected from imputed whole genome sequencing data. Heredity. 2020;124:37–49. doi: 10.1038/s41437-019-0246-7. PubMed DOI PMC
Crossa J, Beyene Y, Kassa S, Pérez P, Hickey JM, Chen C, de los Campos G, Burgueño J, Windhausen VS, Buckler E, et al. Genomic rediction in maize breeding populations with genotyping-by-sequencing. G3: Genes Genomes Genet. 2013;3(11):1903–26. doi: 10.1534/g3.113.008227. PubMed DOI PMC
Jarquín D, Kocak K, Posadas L, Hyma K, Jedlicka J, Graef G, Lorenz A. Genotyping by sequencing for genomic prediction in a soybean breeding population. BMC Genomics. 2014;15:740. doi: 10.1186/1471-2164-15-740. PubMed DOI PMC
El-Dien OG, Ratcliffe B, Klápště J, Chen C, Porth I, El-Kassaby YA. Prediction accuracies for growth and wood attributes of interior spruce in space using genotyping-by-sequencing. BMC Genomics. 2015;16:370. doi: 10.1186/s12864-015-1597-y. PubMed DOI PMC
Li Y, Klápště J, Telfer E, Wilcox P, Graham N, Macdonald L, Dungey HS. Genomic selection for non-key traits in radiata pine when the documented pedigree is corrected using DNA marker information. BMC Genomics. 2019;20:1026. doi: 10.1186/s12864-019-6420-8. PubMed DOI PMC
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler E, Mitchell S. A robust, simple Genotyping-by-Sequencing (GBS) approach for high diversity species. PLoS ONE. 2011;6(5):e19379. doi: 10.1371/journal.pone.0019379. PubMed DOI PMC
Dodds KG, McEwan JC, Brauning R, Anderson RM, van Stijn TC, Kristjánsson T, Clarke S. Construction of relatedness matrices using genotyping-by-sequencing data. BMC Genomics. 2015;16:1047. doi: 10.1186/s12864-015-2252-3. PubMed DOI PMC
Rosvall O. Review of the swedish tree breeding program. Skogforsk, Uppsala, Sweden. 2011.
Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, de los Campos G, Burgueño J, González-Camacho JM, Pérez-Elizalde S, Beyene Y, et al. Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci. 2017;22(11):961–75. doi: 10.1016/j.tplants.2017.08.011. PubMed DOI
Isik F. Genomic selection in forest tree breeding: the concept and an outlook to the future. New Forests. 2014;45:379–401. doi: 10.1007/s11056-014-9422-z. DOI
Goddard ME, Hayes BJ, Meuwissen TH. Using the genomic relationship matrix to predict the accuracy of genomic selection. J Anim Breeding Genet. 2011;128(6):409–21. doi: 10.1111/j.1439-0388.2011.00964.x. PubMed DOI
White IMS, Hill WG. Effect of heterogeneity in recombination rate on variation in realised relationship. Heredity. 2020;124:28–36. doi: 10.1038/s41437-019-0241-z. PubMed DOI PMC
Henderson CR. Best linear unbiased prediction of nonadditive genetic merits in noninbred populations. J Anim Sci. 1985;60(1):111–7. doi: 10.2527/jas1985.601111x. DOI
VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci. 2008;91(11):4414–23. doi: 10.3168/jds.2007-0980. PubMed DOI
Ødegård J, Meuwissen TH. Identity-by-descent genomic selection using selective and sparse genotyping. Genet Sel Evol. 2014;46:3. doi: 10.1186/1297-9686-46-3. PubMed DOI PMC
Ødegård J, Meuwissen TH. Identity-by-descent genomic selection using selective and sparse genotyping for binary traits. Genet Sel Evol. 2015;47:8. doi: 10.1186/s12711-015-0090-z. PubMed DOI PMC
Meuwissen T, Hayes B, Goddard M. Accelerating improvement of livestock with genomic selection. Annu Rev Anim Biosci. 2013;1(1):221–37. doi: 10.1146/annurev-animal-031412-103705. PubMed DOI
Isik F, Holland J, Maltecca C. Genetic Data Analysis for Plant and Animal Breeding. New York: Springer; 2017.
Park T, Casella G. The bayesian lasso. J Am Stat Assoc. 2008;103:681–6. doi: 10.1198/016214508000000337. DOI
Pérez P, de los Campos G, Crossa J, Gianola D. Genomic-enabled prediction based on molecular markers and pedigree using the Bayesian linear regression package in R. Plant Genome. 2010;3(2):106–16. doi: 10.3835/plantgenome2010.04.0005. PubMed DOI PMC
de los Campos G, Perez P, Vazquez A, Crossa J, van der Werf J, B H. Genome-enabled prediction using the BLR (Bayesian Linear Regression) R-package. In: Gondro C, editor. Genome-Wide Association Studies and Genomic Prediction. Methods in Molecular Biology (Methods and Protocols) Totowa, NJ: Humana Press; 2013. PubMed
Li Y, Dungey HS. Expected benefit of genomic selection over forward selection in conifer breeding and deployment. PLoS ONE. 2018;13(12):1–21. PubMed PMC
Resende MFR, Muñoz P, Resende MDV, Garrick DJ, Fernando RL, Davis JM, Jokela EJ, Martin TA, Peter GF, Kirst M. Accuracy of genomic selection methods in a standard data set of loblolly pine (Pinus taeda L,) Genetics. 2012;190(4):1503–10. doi: 10.1534/genetics.111.137026. PubMed DOI PMC
Goddard M. Genomic selection: prediction of accuracy and maximisation of long term response. Genetica. 2009;136:245–57. doi: 10.1007/s10709-008-9308-0. PubMed DOI
Lenz PR, Beaulieu J, Mansfield SD, Clément S, Desponts M, Bousquet J. Factors affecting the accuracy of genomic selection for growth and wood quality traits in an advanced-breeding population of black spruce (Picea mariana) BMC Genomics. 2017;18:335. doi: 10.1186/s12864-017-3715-5. PubMed DOI PMC
Tan B, Grattapaglia D, Martins GS, Ferreira KZ, Sundberg B, Ingvarsson P. Evaluating the accuracy of genomic prediction of growth and wood traits in two Eucalyptus species and their F1 hybrids. BMC Plant Biol. 2017;17:110. doi: 10.1186/s12870-017-1059-6. PubMed DOI PMC
Zapata-Valenzuela J, Isik F, Maltecca C, Wegrzyn J, Neale D, McKeand S, Whetten R. SNP markers trace familial linkages in a cloned population of Pinus taeda–prospects for genomic selection. Tree Genet Genomes. 2012;8:1307–18. doi: 10.1007/s11295-012-0516-5. DOI
Mrode RA. Linear Models for the Prediction of Animal Breeding Values. Oxfordshire: Cabi; 2014.
Gilmour AR, Gogel BJ, Cullis BR, Welham SJ, Thompson R. ASReml user guide release 4.1 structural specification. Hemel hempstead: VSN international ltd. 2015.
Bouvet J, Makouanzi G, Cros D, Vigneron PH. Modeling additive and non-additive effects in a hybrid population using genome-wide genotyping: prediction accuracy implications. Heredity. 2016;116:146–57. doi: 10.1038/hdy.2015.78. PubMed DOI PMC
Isik F, Bartholomé J, Farjat A, Chancerel E, Raffin A, Sanchez L, Plomion C, Bouffier L. Genomic selection in maritime pine. Plant Sci. 2016;242:108–19. doi: 10.1016/j.plantsci.2015.08.006. PubMed DOI
Bartholomé J, Van Heerwaarden J, Isik F, Boury C, Vidal M, Plomion C, Bouffier L. Performance of genomic prediction within and across generations in maritime pine. BMC Genomics. 2016;17:604. doi: 10.1186/s12864-016-2879-8. PubMed DOI PMC
Chen Z, Baison J, Pan J, Karlsson B, Andersson B, Westin J, García-Gil MR, Wu HX. Accuracy of genomic selection for growth and wood quality traits in two control-pollinated progeny trials using exome capture as the genotyping platform in Norway spruce. BMC Genomics. 2018;19:946. doi: 10.1186/s12864-018-5256-y. PubMed DOI PMC
Klápště J, Suontama M, Dungey H, Telfer E, Graham N, Low C, Stovold G. Effect of hidden relatedness on single-step genetic evaluation in an advanced open-pollinated breeding program. J Hered. 2018;109(7):802–10. PubMed PMC
Ratcliffe B, El-Dien O, Klápště J, Porth I, Chen C, Jaquish B, El-Kassaby YA. A comparison of genomic selection models across time in interior spruce (Picea engelmannii × glauca) using unordered SNP imputation methods. Heredity. 2015;115:547–55. doi: 10.1038/hdy.2015.57. PubMed DOI PMC
Thistlethwaite FR, Ratcliffe B, Klápště J, Porth I, Chen C, Stoehr M, El-Kassaby Y. Genomic prediction accuracies in space and time for height and wood density of Douglas-fir using exome capture as the genotyping platform. BMC Genomics. 2017;18:930. doi: 10.1186/s12864-017-4258-5. PubMed DOI PMC
Almqvist C. Improving floral initiation in potted Picea abies by supplemental light treatment. Silva Fenn. 2018;52(2):7772. doi: 10.14214/sf.7772. DOI
Meuwissen T, Hayes B, Goddard M. Genomic selection: A paradigm shift in animal breeding. Anim Front. 2016;6(1):6–14. doi: 10.2527/af.2016-0002. DOI
Cappa EP, El-Kassaby YA, Muoz F, Garcia M, Villalba P, Klápště J, Poltri S. Genomic-based multiple-trait evaluation in Eucalyptus grandis using dominant DArT markers. Plant Sci. 2018;271:27–33. doi: 10.1016/j.plantsci.2018.03.014. PubMed DOI
Suontama M, Klápště J, Telfer E, Graham N, Stovold T, Low C, McKinley R, Dungey H. Efficiency of genomic prediction across two Eucalyptus nitens seed orchards with different selection histories. Heredity. 2018;122:370–9. doi: 10.1038/s41437-018-0119-5. PubMed DOI PMC
Ballesta P, Maldonado C, Pérez-Rodríguez P, Mora F. SNP and haplotype-based genomic selection of quantitative traits in Eucalyptus globulus. Plants. 2019;8(9):331. doi: 10.3390/plants8090331. PubMed DOI PMC
Ballesta P, Bush D, Silva FF, Mora F. Genomic predictions using low-density SNP markers, pedigree and GWAS information: a case study with the non-model species Eucalyptus cladocalyx. Plants. 2020;9(1):99. doi: 10.3390/plants9010099. PubMed DOI PMC
Lenz PRN, Nadeau S, Azaiez A, Gérardi S, Deslauriers M, Perron M, Isabel N, Beaulieu J, Bousquet J. Genomic prediction for hastening and improving efficiency of forward selection in conifer polycross mating designs: an example from white spruce. Heredity. 2020;124:562–78. doi: 10.1038/s41437-019-0290-3. PubMed DOI PMC
Ratcliffe B, El-Dien OG, Cappa EP, Porth I, Klápště J, Chen C, El-Kassaby Y. Single-step BLUP with varying genotyping effort in open-pollinated Picea glauca. G3: Genes Genomes Genet. 2017;7(3):935–42. doi: 10.1534/g3.116.037895. PubMed DOI PMC
Beaulieu J, Doerksen T, Clément S, MacKay J, Bousquet J. Accuracy of genomic selection models in a large population of open-pollinated families in white spruce. Heredity. 2014;113:343–52. doi: 10.1038/hdy.2014.36. PubMed DOI PMC
Lenz PRN, Nadeau S, Mottet MJ, Perron M, Isabel N, Beaulieu J, Bousquet J. Multi-trait genomic selection for weevil resistance, growth, and wood quality in Norway spruce. Evol Appl. 2019;13(1):76–94. doi: 10.1111/eva.12823. PubMed DOI PMC
Zhou L, Chen Z, Olsson L, Grahn T, Karlsson B, Wu H, Lundqvist S-O, García-Gil MR. Effect of number of annual rings and tree ages on genomic predictive ability for solid wood properties of norway spruce. BMC Genomics. 2020;21:323. doi: 10.1186/s12864-020-6737-3. PubMed DOI PMC
Zapata-Valenzuela J, Whetten RW, Neale D, McKeand S, Isik F. Genomic estimated breeding values using genomic relationship matrices in a cloned population of loblolly pine. G3: Genes Genomes Genet. 2013;3(5):909–16. doi: 10.1534/g3.113.005975. PubMed DOI PMC
Munoz P, Resende Jr M, Huber D, Quesada T, Resende MDV, Neale DB, Wegrzyn JL, Kirst M, Peter GF. Genomic relationship matrix for correcting pedigree errors in breeding populations: impact on genetic parameters and genomic selection accuracy. Crop Sci. 2014;54(3):1115–23. doi: 10.2135/cropsci2012.12.0673. DOI
Ukrainetz NK, Mansfield SD. Assessing the sensitivities of genomic selection for growth and wood quality traits in lodgepole pine using Bayesian models. Tree Genet Genomes. 2020;16:14. doi: 10.1007/s11295-019-1404-z. DOI
Daetwyler HD, Calus MPL, Pong-Wong R, de los Campos G, Hickey JM. Genomic prediction in animals and plants: simulation of data, validation, reporting, and benchmarking. Genetics. 2013;193(2):347–65. doi: 10.1534/genetics.112.147983. PubMed DOI PMC
Thistlethwaite FR, El-Dien O, Ratcliffe B, Klápště J, Porth I, Chen C, Stoehr M, Ingvarsson P, El-Kassaby Y. Linkage disequilibrium vs. pedigree: genomic selection prediction accuracy in conifer species. PLoS ONE. 2020;15(6):0232201. doi: 10.1371/journal.pone.0232201. PubMed DOI PMC
Klápště J, Dungey HS, Graham NJ, Telfer EJ. Effect of trait’s expression level on single-step genomic evaluation of resistance to Dothistroma needle blight. BMC Plant Biology. 2020;20(205):1–13. PubMed PMC
Legarra A, Robert-Grani C, Manfredi E, Elsen JM. Performance of genomic selection in mice. Genetics. 2008;180(1):611–8. doi: 10.1534/genetics.108.088575. PubMed DOI PMC
Neale D, Kremer A. Forest tree genomics: growing resources and applications. Nat Rev Genet. 2011;12:111–22. doi: 10.1038/nrg2931. PubMed DOI
Resende Jr MFR, Muoz P, Acosta JJ, Peter GF, Davis JM, Grattapaglia D, Resende MDV, Kirst M. Accelerating the domestication of trees using genomic selection: accuracy of prediction models across ages and environments. New Phytol. 2012;193(3):617–24. doi: 10.1111/j.1469-8137.2011.03895.x. PubMed DOI
Ericsson T. Enhanced heritabilities and best linear unbiased predictors through appropriate blocking of progeny trials. Can J For Res. 1997;27(12):2097–101. doi: 10.1139/x97-153. DOI
Fries A. Genetic parameters, genetic gain and correlated responses in growth, fibre dimensions and wood density in a Scots pine breeding population. Ann For Sci. 2012;69:783–94. doi: 10.1007/s13595-012-0202-7. DOI
Hong Z, Fries A, Wu HX. High negative genetic correlations between growth traits and wood properties suggest incorporating multiple traits selection including economic weights for the future Scots pine breeding programs. Ann For Sci. 2014;71:463–72. doi: 10.1007/s13595-014-0359-3. DOI
Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH. Stacks: building and genotyping loci de novo from short-read sequences. G3: Genes Genomes Genet. 2011;1(3):171–82. doi: 10.1534/g3.111.000240. PubMed DOI PMC
Wegrzyn JL, Liechty JD, Stevens KA, Wu L-S, Loopstra CA, Vasquez-Gross HA, Dougherty WM, Lin BY, Zieve JJ, Martínez-García PJ, et al. Unique features of the loblolly pine (Pinus taeda l.) megagenome revealed through sequence annotation. Genetics. 2014;196(3):891–909. doi: 10.1534/genetics.113.159996. PubMed DOI PMC
Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26(5):589–95. doi: 10.1093/bioinformatics/btp698. PubMed DOI PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Narasimhan V, Danecek P, Scally A, Xue Y, Tyler-Smith C, Durbin R. BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data. Bioinformatics. 2016;32(11):1749–51. doi: 10.1093/bioinformatics/btw044. PubMed DOI PMC
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, et al. The variant call format and VCFtools. Bioinformatics. 2011;27(15):2156–8. doi: 10.1093/bioinformatics/btr330. PubMed DOI PMC
Wimmer V, Albrecht T, Auinger HJ, Schn CC. Synbreed: a framework for the analysis of genomic prediction data using R. Bioinformatics. 2012;28(15):2086–7. doi: 10.1093/bioinformatics/bts335. PubMed DOI
Dutkowski GW, Silva JC, Gilmour AR, Lopez GA. Spatial analysis methods for forest genetic trials. Can J For Res. 2002;32(12):2201–14. doi: 10.1139/x02-111. DOI
Dutkowski GW, Silva JC, Gilmour AR, Wellendorf H, Aguiar A. Spatial analysis enhances modelling of a wide variety of traits in forest genetic trials. Can J For Res. 2006;36(7):1851–70. doi: 10.1139/x06-059. DOI
Dutkowski G, Ivkovik M, Gapare WJ, McRae TA. Defining breeding and deployment regions for radiata pine in southern Australia. New Forests. 2016;47:783–99. doi: 10.1007/s11056-016-9544-6. DOI
Calleja-Rodriguez A, Andersson Gull B, Wu HX, Mullin TJ, Persson T. Genotype-by-environment interactions and the dynamic relationship between tree vitality and height in northern Pinus sylvestris. Tree Genet Genomes. 2019;15:36. doi: 10.1007/s11295-019-1343-8. DOI
Calleja-Rodriguez A, Li Z, Hallingbäck HR, Sillanpää MJ, Wu HX, Abrahamsson S, García-Gil MR. Analysis of phenotypic- and Estimated Breeding Values (EBV) to dissect the genetic architecture of complex traits in a Scots pine three-generation pedigree design. J Theor Biol. 2019;462:283–92. doi: 10.1016/j.jtbi.2018.11.007. PubMed DOI
Chen Z, Karlsson B, Wu HX. Patterns of additive genotype-by-environment interaction in tree height of Norway spruce in southern and central Sweden. Tree Genet Genomes. 2017;13:25. doi: 10.1007/s11295-017-1103-6. DOI
Lynch M, Walsh B. Genetics and Analysis of Quantitative Traits. Sunderland, Massachusets: Sinauer Sunderland, MA; 1998.
Perez P, de los Campos G. Genome-wide regression and prediction with the BGLR statistical package. Genetics. 2014;198(2):483–95. doi: 10.1534/genetics.114.164442. PubMed DOI PMC